
 1

CoSMo 2013

TUTORIAL

You job is to simulate a 2-joint arm, design a feedback-linearization controller to
steer the arm to a target, and compute a roughly time-optimal policy to move the
arm to 0.

The arm has these state dynamics

2 1 22 2

2

12

()0.536 0.36 cos() 0.2 0.18cos()
0.18sin()

00.2 0.18cos() 0.2

q q qq q
q

qq
u q q

where q is a 2-element vector containing the shoulder and elbow angles, in that
order. In your code, you will have to rearrange this formula into control-canonical
form. Integrate the dynamics using Euler’s method with ∆t = 0.01 s. To check
whether you have done all this correctly, simulate 8 s of motion, starting from x
= (1, 1, 0, 0)T, with the policy u(x) = –q, and plot q versus time The result should
look like this:

Next, program a policy to steer the arm to a jumping target, taking Feedback_
linearization.m as your guide. Simulate 8 s of reaching, and make the target joint
angles jump simultaneously within the range [–1, 1] every 1 s. Assume your
controller already has exact knowledge of the state-dynamics functions f() and
G(), so there is no need to learn them or distinguish in your code between f, G
and f_est, G_est. Choose your desired dynamics so both joints always reach
their target angles within 1 s. In your graph, plot shoulder and elbow angles (as

0 1 2 3 4 5 6 7 8

-2
-1

0
1

2

q

Time

 2

solid lines) and their targets (as dashed lines) versus time. As far as possible,
name your variables as in these pages, the notes, and the sample code, e.g. q,
q_star, q_vel, q_acc, Dt, f, G, u.

Finally, program a roughly time-optimal controller for the arm, using
HG_TO_1DOF.m as your guide. To keep your code brief, put the code that
computes f and G into a function m-file called sys_arm.m, much as I did in
HG_TO_1DOF.m. Use the same hpr (for your initial, feedback-linearization
policy), Q, r_, and phi_ as in HG_TO_1DOF.m, except that you will need more
features. During the learning, test your current policy after every 5000 examples,
by computing the cost it accumulates on a movement from x_test = [-0.5; 0.2;
0; 0] to [0; 0; 0; 0]. Plot your policies’ performance on this test movement in a 3-

panel figure, the top panel showing shoulder and elbow angles versus time, the
middle panel showing the accumulating cost versus time, and the bottom panel
showing u versus t. As far as possible, name your variables as in this question,
the notes, and the sample code, e.g. x, x_vel, WX, w, W, phi.

