Model Fitting Nuts & Bolts

Luigi Acerbi

Ma Lab Center for Neural Science New York University

Aug 4, 2017

What is a model?

What is a model?

The best material model of a cat is another, or preferably the same, cat.

N. Wiener, Philosophy of Science (1945) (with A. Rosenblueth)

• Quantitative stand-in for a theory

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p\left(\mathsf{data}|\theta\right)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p\left(\mathsf{data}|\theta\right)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Formally,
 - $ightharpoonup p(\mathsf{data}| heta)$ is a *probability density* as you vary data for a fixed heta
 - $p(\text{data}|\theta)$ is called the *likelihood* and it is a function of θ for a fixed data

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(\mathsf{data}|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Formally,
 - $ightharpoonup p(data|\theta)$ is a *probability density* as you vary data for a fixed θ
 - ▶ $p(\text{data}|\theta)$ is called the *likelihood* and it is a function of θ for a fixed data
- Defining $p(\text{data}|\theta)$ is the core of model building

The likelihood

ullet For numerical reasons we work with $\log p(\mathsf{data}|oldsymbol{ heta})$

The likelihood

- For numerical reasons we work with $\log p(\text{data}|\theta)$
- When the data points are conditionally independent

$$egin{aligned} \log p \left(\operatorname{\mathsf{data}} | oldsymbol{ heta}
ight) &= \log p(oldsymbol{y}^{(1)}, \dots, oldsymbol{y}^{(n)} | oldsymbol{ heta}
ight) \ &= \log \prod_{i=1}^n \log p_i \left(oldsymbol{y}^{(i)} | oldsymbol{ heta}
ight) \end{aligned}$$

The likelihood

- For numerical reasons we work with $\log p(\text{data}|\theta)$
- When the data points are conditionally independent

$$egin{aligned} \log p\left(\mathsf{data}|oldsymbol{ heta}
ight) &= \log p(oldsymbol{y}^{(1)},\ldots,oldsymbol{y}^{(n)}|oldsymbol{ heta}
ight) \ &= \log \prod_{i=1}^n p_i\left(oldsymbol{y}^{(i)}|oldsymbol{ heta}
ight) \ &= \sum_{i=1}^n \log p_i\left(oldsymbol{y}^{(i)}|oldsymbol{ heta}
ight) \end{aligned}$$

• Write function that takes data and θ as input arguments and returns $\log p({\sf data}|\theta)$

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - ullet Model fitting \sim optimization problem

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - ullet Model fitting \sim optimization problem
- 2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - ullet Model fitting \sim optimization problem
- 2. Bayesian posterior

$$p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$$

• For $n o \infty$ converges to MLE (if $p(\hat{\theta}_{\mathsf{ML}}) \neq 0$)

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - ullet Model fitting \sim optimization problem
- 2. Bayesian posterior

$$p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$$

- ullet For $n o\infty$ converges to MLE (if $p(\hat{ heta}_{\mathsf{ML}})
 eq 0$)
- Informative about parameter uncertainty and trade-offs

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - ullet Model fitting \sim optimization problem
- 2. Bayesian posterior

$$p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$$

- ullet For $n o\infty$ converges to MLE (if $p(\hat{oldsymbol{ heta}}_{\mathsf{ML}})
 eq 0$)
- Informative about parameter uncertainty and trade-offs
- Methods: Numerical grid, Laplace approx., variational Bayes...

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

ullet Model fitting \sim optimization problem

2. Bayesian posterior

$$p(\theta|\mathsf{data}) \propto p(\mathsf{data}|\theta)p(\theta)$$

- ullet For $n o\infty$ converges to MLE (if $p(\hat{ heta}_{\mathsf{ML}})
 eq 0$)
- Informative about parameter uncertainty and trade-offs
- Methods: Numerical grid, Laplace approx., variational Bayes...
- ... MCMC sampling

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - Model fitting ~ optimization problem
- 2. Bayesian posterior
 - Model fitting ~ sampling problem (MCMC)

This is all you need!

Model fitting \sim statistical estimation problem

- 1. Maximum likelihood estimation (MLE)
 - Model fitting ~ optimization problem
- 2. Bayesian posterior
 - Model fitting ∼ sampling problem (MCMC)

This is all you need!

(+ what to do with a ML estimate or with MCMC samples)

- Introduction
- 2 Model fitting via optimization
 - An introduction to optimization
 - Optimization algorithms
 - Bayesian Optimization and BADS
- Model selection via point estimates and little more
 - AIC/AICc
 - BIC
 - Cross-validation (CV)
 - Marginal likelihood and Laplace approximation
- 4 A couple of slides about MCMC

- Introduction
- Model fitting via optimization
 - An introduction to optimization
 - Optimization algorithms
 - Bayesian Optimization and BADS
- Model selection via point estimates and little more
 - AIC/AICc
 - BIC
 - Cross-validation (CV)
 - Marginal likelihood and Laplace approximation
- 4 A couple of slides about MCMC

The problem

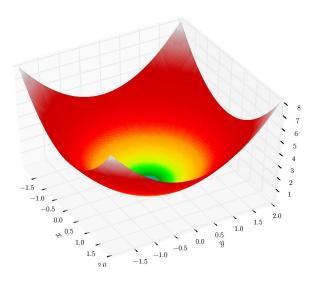
• Given $f(x) \equiv -\log p(\text{data}|x)$

The problem

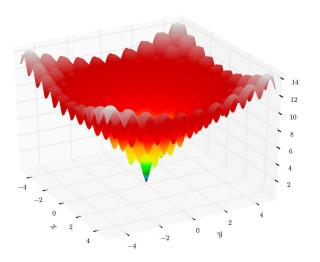
- Given $f(x) \equiv -\log p(\text{data}|x)$
- Find $x_{opt} \approx \arg\min_{x} f(x)$ as fast as possible

The problem

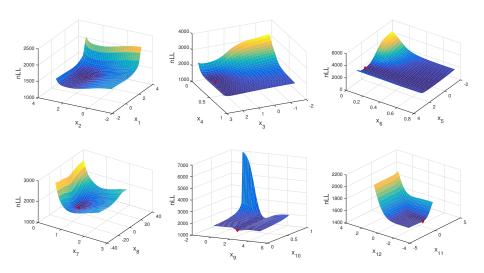
- Given $f(x) \equiv -\log p(\text{data}|x)$
- Find $x_{opt} \approx \arg \min_{x} f(x)$ as fast as possible
- General case: f(x) is a black box

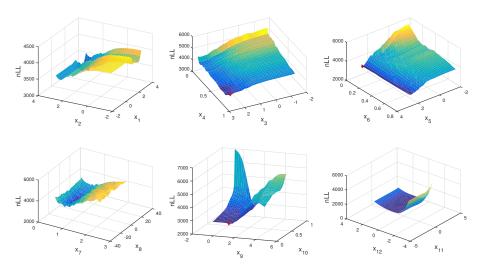


Source: Wikimedia Commons



Source: Wikimedia Commons





neval	x_1	<i>x</i> ₂	f(x)
1	-0.500	2.500	508.500
2	-0.525	2.500	497.110
3	-0.500	2.625	566.313
4	-0.525	2.375	443.063
5	-0.537	2.250	386.953
6	-0.563	2.250	376.320
7	-0.594	2.125	316.702
8	-0.606	1.875	229.824
9	-0.647	1.563	133.598
10	-0.703	1.438	91.847
11	-0.786	1.031	20.292
12	-0.839	0.469	8.918
13	-0.962	-0.359	168.785
14	-0.978	-0.063	107.796
15	-0.895	0.344	24.553
16	-0.730	1.156	41.905
17	-0.854	0.547	6.760
18	-0.907	-0.016	73.917
19	-0.816	0.770	4.366
20	-0.831	0.848	5.818
21	-0.793	1.070	22.655
22	-0.839	0.678	3.448
23	-0.824	0.600	3.955
24	-0.846	0.508	7.766
25	-0.824	0.704	3.391
26	-0.839	0.782	4.004
27	-0.828	0.645	3.497
28	-0.835	0.737	3.523
29	?	?	?

Optimization can be hard

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')
- Expensive function evaluation
- Noisy function evaluation
- Rough landscape (numerical approximations, etc.)

• *Domain* of parameter vector $oldsymbol{ heta} = (heta_1, heta_2, \dots, heta_k) \in oldsymbol{\Theta}$

- Domain of parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k) \in \boldsymbol{\Theta}$ In practice, for each θ_k , define
 - ▶ The hard bounds of the parameter.
 - ★ Mathematical constraints (e.g., $\sigma > 0$; $0 \le p \le 1$)
 - ★ Effective physical limitations

- Domain of parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k) \in \boldsymbol{\Theta}$ In practice, for each θ_k , define
 - ▶ The hard bounds of the parameter.
 - ★ Mathematical constraints (e.g., $\sigma > 0$; $0 \le p \le 1$)
 - ★ Effective physical limitations
 - ▶ The reasonable bounds of the parameter
 - ★ Should span parameter values of all observers
 - ★ Built from pilot studies, literature, guesswork
 - ★ If in doubt, start larger

- Domain of parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k) \in \boldsymbol{\Theta}$ In practice, for each θ_k , define
 - ▶ The *hard bounds* of the parameter.
 - ★ Mathematical constraints (e.g., $\sigma > 0$; $0 \le p \le 1$)
 - ★ Effective physical limitations
 - ▶ The reasonable bounds of the parameter
 - ★ Should span parameter values of all observers
 - ★ Built from pilot studies, literature, guesswork
 - ★ If in doubt, start larger
- Consider reparameterizations to achieve
 - Uniformity of effects across parameter range
 - Independence between parameters

Which algorithm to use?

Deterministic

Nelder-Mead Quasi-Newton methods Direct search

Multi-level Coordinate Search

fminsearch fminunc,fmincon patternsearch

mcs

MATLAB Toolbox

Optimization Global Optimization

Global Optimization

Global Optimization

Global Optimization

— (free)

Stochastic

Simulated Annealing Genetic Algorithm Particle Swarm CMA-ES

Bayesian Optimization Bayesian Adaptive Direct Search

simulannealbnd ga particleswarm cmaes

bayesopt bads

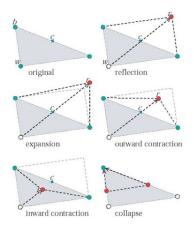
Stats & ML

— (free)

— (free)

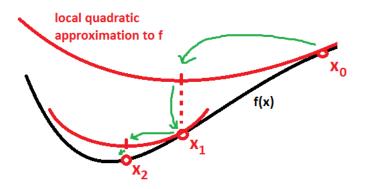
Nelder-Mead (fminsearch)

J. A. Nelder & R. Mead, A simplex method for function minimization (1965)



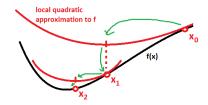
Source: Encyclopedia of Artificial Intelligence (2009)

Newton method



 ${\sf Source:\ StackExchange}$

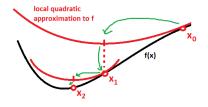
Newton method



Source: StackExchange

Needs the inverse of the curvature (inverse Hessian) Very expensive in high dimension

Quasi-Newton methods (fminunc, fmincon)

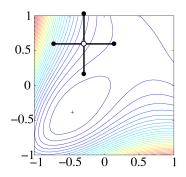


Source: StackExchange

Approximate Hessian (DFP) or inverse Hessian (BFGS) via gradient Very fast and efficient on smooth problems

Direct search (patternsearch)

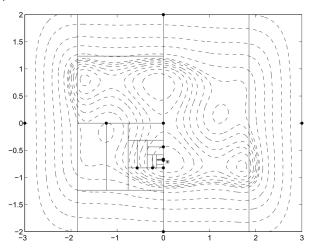
R. Hooke and T.A. Jeeves, "Direct search" solution of numerical and statistical problems (1961)



Source: Wikimedia Commons

Multilevel Coordinate Search (mcs)

[*] W. Huyer and A. Neumaier, Global Optimization by Multilevel Coordinate Search (1999)



Source: [*]

Genetic Algorithms (ga)

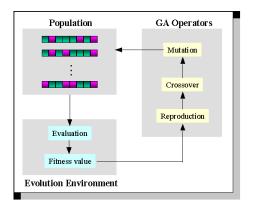
J.H. Holland, Adaptation in Natural and Artificial Systems (1975)

- Evolutionary algorithm
- Population based

Genetic Algorithms (ga)

J.H. Holland, Adaptation in Natural and Artificial Systems (1975)

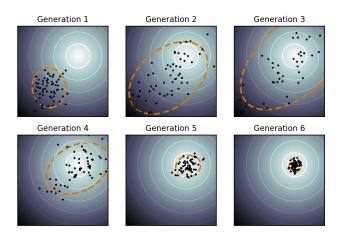
- Evolutionary algorithm
- Population based



Source: An Educational GA Learning Tool (IEEE)

Cov. Matrix Adaptation - Evolution Strategies (cmaes)

[*] N. Hansen, S. D. Müller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), (2003)



J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization (1994)

- J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization (1994)
 - Start with a prior over functions (Gaussian process)

- J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization (1994)
 - Start with a prior over functions (Gaussian process)
 - **②** Find \tilde{x} that maximizes acquisition function (exploration/exploitation)

- J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization (1994)
 - Start with a prior over functions (Gaussian process)
 - 2 Find \tilde{x} that maximizes acquisition function (exploration/exploitation)
 - **3** Evaluate f(x)

- J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization (1994)
 - Start with a prior over functions (Gaussian process)
 - 2 Find \tilde{x} that maximizes acquisition function (exploration/exploitation)
 - **3** Evaluate f(x)
 - Compute posterior over functions (Gaussian process)

- J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization (1994)
 - Start with a prior over functions (Gaussian process)
 - 2 Find \tilde{x} that maximizes acquisition function (exploration/exploitation)
 - **3** Evaluate f(x)
 - Compute posterior over functions (Gaussian process)
 - goto 2

ullet Good for expensive ($\gtrsim 10$ mins), noisy functions up to D pprox 20

- Good for expensive ($\gtrsim 10$ mins), noisy functions up to $D \approx 20$
- Scales badly with n, computation time $\sim O(n^3)$

- Good for expensive ($\gtrsim 10$ mins), noisy functions up to $D \approx 20$
- Scales badly with n, computation time $\sim O(n^3)$
- Performance depends on quality of global approximation

Bayesian Adaptive Direct Search (bads)

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

Bayesian Adaptive Direct Search (bads)

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

Algorithm

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
 - POLL STEP: Evaluate up to 2D points around x, update x
 - ightharpoonup (TRAIN STEP: Train GP on neighborhood of x)
 - \triangleright SEARCH STEP: Perform multiple iterations of BO in neighborhood of x

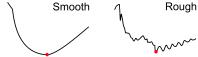
Acerbi and Ma, 2017, arXiv preprint

Bayesian Adaptive Direct Search (bads)

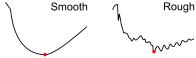
- ullet Good for moderately costly ($\gtrsim 0.1~\mathrm{s}$) or noisy functions
- Scales okay with *n* (uses only local neighborhood)
- Local approximation deals with nonstationarity
- Explicit support for noise

Smooth Rough

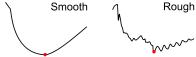
Check your landscape



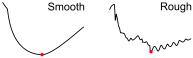
- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc, fmincon)
 - ▶ If you can compute the gradient, do it!



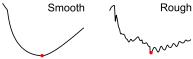
- Check your landscape
- $\bullet \ \, \text{If your problem is smooth} \Longrightarrow \text{quasi-Newton (fminunc,fmincon)}$
 - ▶ If you can compute the gradient, do it!
- If your problem is rough or noisy...



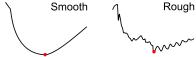
- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc,fmincon)
 - If you can compute the gradient, do it!
- If your problem is rough or noisy...
 - Try to make it smooth and deterministic!



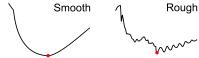
- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc,fmincon)
 - If you can compute the gradient, do it!
- If your problem is rough or noisy...
 - ▶ Try to make it smooth and deterministic!
 - ▶ In low dimension, not very noisy ⇒ MCS



- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc,fmincon)
 - ▶ If you can compute the gradient, do it!
- If your problem is rough or noisy...
 - ▶ Try to make it smooth and deterministic!
 - ▶ In low dimension, not very noisy ⇒ MCS
 - lacktriangle If the fcn is moderately costly \Longrightarrow BADS



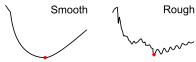
- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc,fmincon)
 - ▶ If you can compute the gradient, do it!
- If your problem is rough or noisy...
 - ▶ Try to make it smooth and deterministic!
 - ► In low dimension, not very noisy ⇒ MCS
 - ▶ If the fcn is moderately costly ⇒ BADS
 - ▶ $D \gtrsim 20$ and/or you can afford *many* fcn evals \Longrightarrow CMA-ES



- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc,fmincon)
 - ▶ If you can compute the gradient, do it!
- If your problem is rough or noisy...
 - ► Try to make it smooth and deterministic!
 - ► In low dimension, not very noisy ⇒ MCS
 - ▶ If the fcn is moderately costly ⇒ BADS
 - ▶ $D \gtrsim 20$ and/or you can afford *many* fcn evals \Longrightarrow CMA-ES
- Independently of the method, use several starting points
 - Use space-filling designs (Latin hypercubes, quasi-random sequences)

Random

Space-filling



- Check your landscape
- ullet If your problem is smooth \Longrightarrow quasi-Newton (fminunc,fmincon)
 - ▶ If you can compute the gradient, do it!
- If your problem is rough or noisy...
 - ▶ Try to make it smooth and deterministic!
 - ► In low dimension, not very noisy ⇒ MCS
 - ▶ If the fcn is moderately costly ⇒ BADS
 - ▶ $D \gtrsim 20$ and/or you can afford many fcn evals \implies CMA-ES
- Independently of the method, use several starting points
 - Use space-filling designs (Latin hypercubes, quasi-random sequences)

Random

Space-filling

 If you can afford many fcn evals...consider MCMC instead of optimization!

- Introduction
- 2 Model fitting via optimization
 - An introduction to optimization
 - Optimization algorithms
 - Bayesian Optimization and BADS
- Model selection via point estimates and little more
 - AIC/AICc
 - BIC
 - Cross-validation (CV)
 - Marginal likelihood and Laplace approximation
- 4 A couple of slides about MCMC

The problem

- Several models $\mathcal{M}_1, \dots, \mathcal{M}_M$
- ullet For each \mathcal{M}_m we know $\log p(\mathsf{data}|\hat{oldsymbol{ heta}}_\mathsf{ML},\mathcal{M}_m)$
- Find the best model

The problem

- Several models $\mathcal{M}_1, \dots, \mathcal{M}_M$
- ullet For each \mathcal{M}_m we know $\log p(\mathsf{data}|\hat{oldsymbol{ heta}}_\mathsf{ML},\mathcal{M}_m)$
- Find the best model

Typical form of model comparison metric

Goodness of fit Model complexity $MCM(\mathsf{data}, \mathcal{M}_m) \propto \log p(\mathsf{data}|\hat{\theta}_\mathsf{ML}, \mathcal{M}_m) - f(\mathsf{data}, \mathcal{M}_m)$

The problem

- Several models $\mathcal{M}_1, \dots, \mathcal{M}_M$
- ullet For each \mathcal{M}_m we know $\log p(\mathsf{data}|\hat{oldsymbol{ heta}}_\mathsf{ML},\mathcal{M}_m)$
- Find the best model

Typical form of model comparison metric

Goodness of fit Model complexity $MCM(\mathsf{data}, \mathcal{M}_m) \propto \log p(\mathsf{data}|\hat{\pmb{\theta}}_\mathsf{ML}, \mathcal{M}_m) - f(\mathsf{data}, \mathcal{M}_m)$

Notation:

- k number of parameters
- n number of trials

Akaike information criterion (AIC)

Akaike information criterion

$$AIC = \log p(\text{data}|\hat{\theta}_{\text{ML}}, \mathcal{M}_m) - k$$

Akaike information criterion (AIC)

Akaike information criterion

$$AIC = -2 \log p(data|\hat{\theta}_{ML}, \mathcal{M}_m) + 2k$$

Akaike information criterion (AIC)

Akaike information criterion

$$AIC = \log p(\text{data}|\hat{\theta}_{\text{ML}}, \mathcal{M}_m) - k$$

- Goal: Find best predictive model
 - ▶ Does not assume \mathcal{M}_{true} is in the model set
 - Find closest statistical approximation (lowest KL-divergence from $\mathcal{M}_{\mathsf{true}}$)

Why penalty is k?

Why penalty is k?

(Do you really want to know?)

Why penalty is k?

$$\mathcal{M}_m$$
 that maximizes $\left\langle \log p(y|\hat{m{ heta}}_{\mathsf{ML}},\mathcal{M}_m)
ight
angle_{y\sim p_{\mathsf{true}}}$

Why penalty is k?

Best predictive model

$$\mathcal{M}_m$$
 that maximizes $\left\langle \log p(y|\hat{m{ heta}}_{\mathsf{ML}},\mathcal{M}_m)
ight
angle_{y\sim p_{\mathsf{true}}}$

ullet Same thing as \mathcal{M}_m that minimizes $\mathit{KL}(p_{\mathsf{true}}||p_m)$

Why penalty is k?

$$\mathcal{M}_m$$
 that maximizes $\left\langle \log p(y|\hat{m{ heta}}_{\mathsf{ML}},\mathcal{M}_m)
ight
angle_{y\sim p_{\mathsf{true}}}$

- Same thing as \mathcal{M}_m that minimizes $\mathit{KL}(p_{\mathsf{true}}||p_m)$
- $\left\langle \log p(y|\hat{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{y \sim p_{\mathsf{true}}} \approx \frac{1}{n} \sum_{i=1}^n \log p(y_i|\hat{\theta}_{\mathsf{ML}}, \mathcal{M}_m)$

Why penalty is k?

$$\mathcal{M}_m$$
 that maximizes $\left\langle \log p(y|\hat{m{ heta}}_{\mathsf{ML}},\mathcal{M}_m)
ight
angle_{y\sim p_{\mathsf{true}}}$

- ullet Same thing as \mathcal{M}_m that minimizes $\mathit{KL}(p_{\mathsf{true}}||p_m)$
- $\left\langle \log p(y|\hat{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{y \sim p_{\mathsf{true}}} \approx \frac{1}{n} \sum_{i=1}^n \log p(y_i|\hat{\theta}_{\mathsf{ML}}, \mathcal{M}_m)$
- $\frac{1}{n}\sum_{i=1}^{n}\log p(y_i|\hat{\theta}_{\mathrm{ML}},\mathcal{M}_m)$ is a biased estimate

Why penalty is k?

$$\mathcal{M}_m$$
 that maximizes $\left\langle \log p(y|\hat{m{ heta}}_{\mathsf{ML}},\mathcal{M}_m)
ight
angle_{y\sim p_{\mathsf{true}}}$

- ullet Same thing as \mathcal{M}_m that minimizes $\mathit{KL}(p_{\mathsf{true}}||p_m)$
- $\left\langle \log p(y|\hat{\theta}_{\mathsf{ML}},\mathcal{M}_m) \right\rangle_{y \sim p_{\mathsf{true}}} \approx \frac{1}{n} \sum_{i=1}^n \log p(y_i|\hat{\theta}_{\mathsf{ML}},\mathcal{M}_m)$
- $\frac{1}{n} \sum_{i=1}^{n} \log p(y_i | \hat{\theta}_{ML}, \mathcal{M}_m)$ is a biased estimate
- Bias correction per trial $\approx \frac{1}{n}k$

Why penalty is k?

$$\mathcal{M}_m$$
 that maximizes $\left\langle \log p(y|\hat{m{ heta}}_{\mathsf{ML}},\mathcal{M}_m)
ight
angle_{y\sim p_{\mathsf{true}}}$

- ullet Same thing as \mathcal{M}_m that minimizes $\mathit{KL}(p_{\mathsf{true}}||p_m)$
- $\left\langle \log p(y|\hat{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{y \sim p_{\mathsf{true}}} \approx \frac{1}{n} \sum_{i=1}^n \log p(y_i|\hat{\theta}_{\mathsf{ML}}, \mathcal{M}_m)$
- $\frac{1}{n} \sum_{i=1}^{n} \log p(y_i | \hat{\theta}_{ML}, \mathcal{M}_m)$ is a biased estimate
- Bias correction per trial $\approx \frac{1}{n}k$
- Assumptions:
 - ▶ CLT (large n), log likelihood \sim quadratic near MLE
 - p close to p_{true}
 - lacktriangle model identifiable (bijective mapping $heta\longleftrightarrow p(y| heta))$

Corrected Akaike information criterion (AICc)

corrected Akaike information criterion

$$\mathsf{AICc} = \log p(\mathsf{data}|\hat{\pmb{\theta}}_\mathsf{ML},\mathcal{M}_m) - k\left(rac{n}{n-k-1}
ight)$$

Corrected Akaike information criterion (AICc)

corrected Akaike information criterion

$$\mathsf{AICc} = \mathsf{log}\,p(\mathsf{data}|\hat{\pmb{\theta}}_\mathsf{ML},\mathcal{M}_m) - k\left(rac{n}{n-k-1}
ight)$$

- Correction derived for linear models
 - ▶ Still, better than AIC for small sample size

$$BIC = \log p(\text{data}|\hat{\theta}_{\text{ML}}, \mathcal{M}_m) - \frac{1}{2}k \log n$$

$$BIC = -2 \log p(\text{data}|\hat{\theta}_{ML}, \mathcal{M}_m) + k \log n$$

$$BIC = \log p(\text{data}|\hat{\theta}_{\text{ML}}, \mathcal{M}_m) - \frac{1}{2}k \log n$$

- Goal: Find true model
 - Assume \mathcal{M}_{true} is in the model set
 - ▶ Based on loooose approximation of $P(\mathcal{M}|data)$

$$\mathsf{BIC} = \log p(\mathsf{data}|\hat{\pmb{\theta}}_\mathsf{ML},\mathcal{M}_m) - \frac{1}{2}k\log n$$

- Goal: Find true model
 - Assume \mathcal{M}_{true} is in the model set
 - ▶ Based on loooose approximation of $P(\mathcal{M}|data)$
- Penalizes complexity much more than AIC(c)

$$\mathsf{BIC} = \log p(\mathsf{data}|\hat{\pmb{\theta}}_\mathsf{ML},\mathcal{M}_m) - \frac{1}{2}k\log n$$

- Goal: Find true model
 - Assume \mathcal{M}_{true} is in the model set
 - ▶ Based on loooose approximation of $P(\mathcal{M}|data)$
- Penalizes complexity much more than AIC(c)
- Consistent: for $n \to \infty$ selects $\mathcal{M}_{\mathsf{true}}$ if $\mathcal{M}_{\mathsf{true}}$ in model set

• Goal: Find best predictive model

- Goal: Find best predictive model
 - ► Split data in training and validation

- Goal: Find best predictive model
 - Split data in training and validation

$$\begin{array}{l} \displaystyle \frac{1}{n} \left\langle \log p(\mathsf{data}|\boldsymbol{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{p_{\mathsf{true}}} \approx \\ \displaystyle \left\langle \frac{1}{n_V} \log p(\mathsf{validation} \; \mathsf{data}|\hat{\boldsymbol{\theta}}_{\mathsf{train}}, \mathcal{M}_m) \right\rangle_{\mathsf{train, validation}} \end{array}$$

- Goal: Find best predictive model
 - Split data in training and validation
 - $\begin{array}{l} \frac{1}{n} \left\langle \log p(\mathsf{data}|\boldsymbol{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{p_{\mathsf{true}}} \approx \\ \left\langle \frac{1}{n_V} \log p(\mathsf{validation} \; \mathsf{data}|\hat{\boldsymbol{\theta}}_{\mathsf{train}}, \mathcal{M}_m) \right\rangle_{\mathsf{train, validation}} \end{aligned}$

Cross-validated log likelihood

$$CV = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{n_V} \log p(\text{validation data}^{(i)} | \hat{\theta}_{\text{train}^{(i)}}, \mathcal{M}_m)$$

- **Goal:** Find best predictive model
 - Split data in training and validation
 - $\begin{array}{l} \frac{1}{n} \left\langle \log p(\mathsf{data}|\boldsymbol{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{p_{\mathsf{true}}} \approx \\ \left\langle \frac{1}{n_V} \log p(\mathsf{validation} \; \mathsf{data}|\hat{\boldsymbol{\theta}}_{\mathsf{train}}, \mathcal{M}_m) \right\rangle_{\mathsf{train, validation}} \end{aligned}$

Cross-validated log likelihood

$$CV = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{n_V} \log p(\text{validation data}^{(i)} | \hat{\theta}_{\text{train}^{(i)}}, \mathcal{M}_m)$$

 Typical cases: K-fold cross-validation, leave-one-out (LOO) cross-validation

- Goal: Find best predictive model
 - Split data in training and validation
 - $\begin{array}{l} \displaystyle \blacktriangleright \ \, \frac{1}{n} \left\langle \log p(\mathsf{data}|\boldsymbol{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{p_{\mathsf{true}}} \approx \\ \displaystyle \left\langle \frac{1}{n_V} \log p(\mathsf{validation} \ \mathsf{data}| \hat{\boldsymbol{\theta}}_{\mathsf{train}}, \mathcal{M}_m) \right\rangle_{\mathsf{train, validation}} \end{array}$

Cross-validated log likelihood

$$\mathsf{CV} = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{n_V} \log p(\mathsf{validation} \; \mathsf{data}^{(i)} | \hat{\theta}_{\mathsf{train}^{(i)}}, \mathcal{M}_m)$$

- Typical cases: K-fold cross-validation, leave-one-out (LOO) cross-validation
 - ► AIC tends to LOO

- Goal: Find best predictive model
 - Split data in training and validation
 - $\begin{array}{l} \frac{1}{n} \left\langle \log p(\mathsf{data}|\boldsymbol{\theta}_{\mathsf{ML}}, \mathcal{M}_m) \right\rangle_{p_{\mathsf{true}}} \approx \\ \left\langle \frac{1}{n_V} \log p(\mathsf{validation} \; \mathsf{data}|\hat{\boldsymbol{\theta}}_{\mathsf{train}}, \mathcal{M}_m) \right\rangle_{\mathsf{train, validation}} \end{aligned}$

Cross-validated log likelihood

$$\mathsf{CV} = \frac{1}{K} \sum_{i=1}^{K} \frac{1}{n_V} \log p(\mathsf{validation} \; \mathsf{data}^{(i)} | \hat{\theta}_{\mathsf{train}^{(i)}}, \mathcal{M}_m)$$

- Typical cases: K-fold cross-validation, leave-one-out (LOO) cross-validation
 - AIC tends to LOO
- Essentially no assumptions (but caveats)
- Computationally expensive

Can we be more Bayesian?

Can we be more Bayesian?

(Not really, with only point estimates)

Can we be more Bayesian?

• Goal: Find model with highest posterior probability

Can we be more Bayesian?

• Goal: Find model with highest posterior probability

$$P(\mathcal{M}|\mathsf{data}) = \frac{P(\mathsf{data}|\mathcal{M})P(\mathcal{M})}{P(\mathsf{data})}$$

Can we be more Bayesian?

• Goal: Find model with highest posterior probability

$$P(\mathcal{M}|\mathsf{data}) = \frac{P(\mathsf{data}|\mathcal{M})P(\mathcal{M})}{P(\mathsf{data})}$$

$$P(\mathsf{data}|\mathcal{M}) = \int p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{M})d\boldsymbol{\theta}$$

Can we be more Bayesian?

• Goal: Find model with highest posterior probability

$$P(\mathcal{M}|\mathsf{data}) = \frac{P(\mathsf{data}|\mathcal{M})P(\mathcal{M})}{P(\mathsf{data})}$$

Marginal likelihood

$$P(\mathsf{data}|\mathcal{M}) = \int p(\mathsf{data}|oldsymbol{ heta})p(oldsymbol{ heta}|\mathcal{M})doldsymbol{ heta}$$

• Pros: Theoretically sound, consistent, Bayesian Occam's razor

Can we be more Bayesian?

Goal: Find model with highest posterior probability

$$P(\mathcal{M}|\mathsf{data}) = \frac{P(\mathsf{data}|\mathcal{M})P(\mathcal{M})}{P(\mathsf{data})}$$

$$P(\mathsf{data}|\mathcal{M}) = \int p(\mathsf{data}|oldsymbol{ heta})p(oldsymbol{ heta}|\mathcal{M})doldsymbol{ heta}$$

- Pros: Theoretically sound, consistent, Bayesian Occam's razor
- Cons: Hard to compute, depends on choice of prior

Can we be more Bayesian?

Goal: Find model with highest posterior probability

$$P(\mathcal{M}|\mathsf{data}) = \frac{P(\mathsf{data}|\mathcal{M})P(\mathcal{M})}{P(\mathsf{data})}$$

$$P(\mathsf{data}|\mathcal{M}) = \int p(\mathsf{data}|\pmb{\theta})p(\pmb{\theta}|\mathcal{M})d\pmb{\theta}$$

- Pros: Theoretically sound, consistent, Bayesian Occam's razor
- Cons: Hard to compute, depends on choice of prior
- Laplace approximation: $P(\text{data}|\hat{\theta}_{\text{ML}}, \mathcal{M}_m) + \frac{k}{2} \log 2\pi \frac{1}{2} \log |\det \mathbf{H}(\theta_{\text{ML}})|$

Can we be more Bayesian?

• Goal: Find model with highest posterior probability

$$P(\mathcal{M}|\mathsf{data}) = \frac{P(\mathsf{data}|\mathcal{M})P(\mathcal{M})}{P(\mathsf{data})}$$

$$P(\mathsf{data}|\mathcal{M}) = \int p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{M})d\boldsymbol{\theta}$$

- Pros: Theoretically sound, consistent, Bayesian Occam's razor
- Cons: Hard to compute, depends on choice of prior
- Laplace approximation: $P(\text{data}|\hat{\mathcal{M}}) \approx \log p(\text{data}|\hat{\theta}_{\text{ML}}, \mathcal{M}_m) + \frac{k}{2}\log 2\pi \frac{1}{2}\log |\det \mathbf{H}(\theta_{\text{ML}})|$
 - ► Can be good or terrible, depending on posterior and on the basis

• AIC(c) vs BIC

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - ▶ BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - ▶ BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood
 - ▶ If you can compute it (analytically or numerically), use it

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood
 - If you can compute it (analytically or numerically), use it
 - \triangleright Laplace approximation may be okay for large n, but be careful

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood
 - ▶ If you can compute it (analytically or numerically), use it
 - ightharpoonup Laplace approximation may be okay for large n, but be careful
- Cross-validation

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood
 - If you can compute it (analytically or numerically), use it
 - \triangleright Laplace approximation may be okay for large n, but be careful
- Cross-validation
 - ► Takes into account structure of the model/parameters

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood
 - ▶ If you can compute it (analytically or numerically), use it
 - \triangleright Laplace approximation may be okay for large n, but be careful
- Cross-validation
 - ► Takes into account structure of the model/parameters
 - ▶ Most recommended 10-fold cross-validation

- AIC(c) vs BIC
 - ► AIC(c) will almost always pick the most complex model
 - ▶ BIC has too large penalty for complexity
 - Correct model complexity penalty often between AIC(c) and BIC
 - ► AIC(c) and BIC have no knowledge of the model
 - ▶ Rule of thumb: Try both; if they disagree, use more complex method
- Marginal likelihood
 - If you can compute it (analytically or numerically), use it
 - \triangleright Laplace approximation may be okay for large n, but be careful
- Cross-validation
 - ► Takes into account structure of the model/parameters
 - ▶ Most recommended 10-fold cross-validation
 - Computationally expensive but might be worth it

- Introduction
- 2 Model fitting via optimization
 - An introduction to optimization
 - Optimization algorithms
 - Bayesian Optimization and BADS
- Model selection via point estimates and little more
 - AIC/AICc
 - BIC
 - Cross-validation (CV)
 - Marginal likelihood and Laplace approximation
- 4 A couple of slides about MCMC

One slide about MCMC

One slide about MCMC

Use MCMC

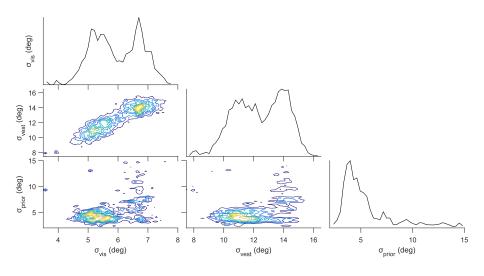


Figure made with cornerplot.m, by Will T. Adler

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - Robustness of claims (Acerbi, Ma, Vijayakumar, 2014)

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, 2014)
- Less overfitting

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

But MCMC is finicky!

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

But MCMC is finicky!

Use slice sampling (Neal, 2003)

Applied example

New Results

Bayesian Comparison of Explicit and Implicit Causal Inference Strategies in Multisensory Heading Perception

📵 Luigi Acerbi, Kalpana Dokka, 📵 Dora E. Angelaki, Wei Ji Ma

doi: https://doi.org/10.1101/150052

This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract

Info/History Metrics

Preview PDF

Final slide

- Contact me at luigi.acerbi@nyu.edu for questions
- BADS available at github.com/lacerbi/bads
- Demos available at github.com/lacerbi/optimviz
- Tutorial code at github.com/lacerbi/cosmo-2017-tutorial

Final slide

- Contact me at luigi.acerbi@nyu.edu for questions
- BADS available at github.com/lacerbi/bads
- Demos available at github.com/lacerbi/optimviz
- Tutorial code at github.com/lacerbi/cosmo-2017-tutorial

Acknowledgments

- Weiji & the Ma lab
- Gunnar, Konrad, Paul
- You

Final slide

- Contact me at luigi.acerbi@nyu.edu for questions
- BADS available at github.com/lacerbi/bads
- Demos available at github.com/lacerbi/optimviz
- Tutorial code at github.com/lacerbi/cosmo-2017-tutorial

Acknowledgments

- Weiji & the Ma lab
- Gunnar, Konrad, Paul
- You

Thanks!