Markov Chain Monte Carlo (MCMC)

Sampling methods
Sampling

- Selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population.

- A **probability sample** is a sample in which every unit in the population has a chance (greater than zero) of being selected in the sample, and this probability can be accurately determined.

- **Nonprobability sampling** is any sampling method where some elements of the population have no chance of selection → does not allow to estimate sampling errors!

- Replacement of samples
 - Sampling **with** replacement
 - Sampling **without** replacement

 (Wikipedia)
Sampling methods

- In a **simple random sample** (SRS) of a given size, all such subsets of the frame are given an equal probability
 - Minimizes biases and simplifies analysis
 - Within sample variance is approximation of population variance
- **Systematic sampling** (also known as interval sampling) relies on arranging the study population according to some ordering scheme and then selecting elements at regular intervals through that ordered list
 - Often more accurate than SRS but difficult to quantify accuracy
- Where the population embraces a number of distinct categories, the frame can be organized by these categories into separate "strata“ (**stratified sampling**). Each stratum is then sampled as an independent sub-population, out of which individual elements can be randomly selected
- **Probability-proportional-to-size sampling**
- Sometimes it is more cost-effective to select respondents in groups (**cluster sampling**)
- In **quota sampling**, the population is first segmented into mutually exclusive sub-groups, then subjects are selected from each group based on a specified proportion
...
Errors

- **Sampling errors**
 - **Selection bias**: When the true selection probabilities differ from those assumed in calculating the results.
 - **Random sampling error**: Random variation in the results due to the elements in the sample being selected at random

- **Non-sampling error**
 - Non-sampling errors are other errors which can impact the final survey estimates, caused by problems in data collection, processing, or sample design
 - Over-coverage
 - Under-coverage
 - Measurement error
 - Processing error
 - Non-response
Markov chain Monte Carlo?

- a class of algorithms for sampling from a probability distribution based on constructing a Markov chain that has the desired distribution as its equilibrium distribution

- Markov chain = a random process that undergoes transitions from one state to another on a state space
 - NO memory!!!

- Example: hidden MC
Markov chain

- **Markov chain** = sequence of random variables a process moves through, with the Markov property defining serial dependence only between adjacent periods (as in a "chain")

\[
\begin{pmatrix}
E \\
A
\end{pmatrix}_{k+1} =
\begin{pmatrix}
0.3 & 0.4 \\
0.7 & 0.6
\end{pmatrix}
\begin{pmatrix}
E \\
A
\end{pmatrix}_k + \text{noise}
\]

- Systems that follow a chain of linked events, where what happens next depends only on the current state of the system
- Example: random walk
- Without external inputs, this typically converges! \(\Rightarrow \) stationary

\[
P^k \begin{pmatrix}
E \\
A
\end{pmatrix}_k \approx P^{k+1} \begin{pmatrix}
E \\
A
\end{pmatrix}_{k+1}
\]
Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.

- E.g. through generating draws from a sequence of probability distributions.

Monte Carlo methods tend to follow a particular pattern:

- Define a domain of possible inputs.
- Generate inputs randomly from a probability distribution over the domain.
- Perform a deterministic computation on the inputs.
- Aggregate the results.
Markov chain Monte Carlo!

- Markov chain Monte Carlo (MCMC) methods have revolutionized the practicability of Bayesian inference methods, allowing a wide range of posterior distributions to be simulated and their parameters found numerically.
 - MCMC methods are primarily used for calculating numerical approximations of multi-dimensional integrals, for example in Bayesian statistics, computational physics, and computational biology.
 - Random samples used in a conventional Monte Carlo are statistically independent, those used in MCMC are correlated.
 - For approximating a multi-dimensional integral, an ensemble of "walkers" move around randomly. At each point where a walker steps, the integrand value is counted towards the integral. The walker then may make a number of tentative steps around the area, looking for a place with a reasonably high contribution to the integral to move into next.
 - A Markov chain is constructed in such a way as to have the integrand as its equilibrium distribution.
Problem formulation

- Given observed data (D) and model parameters / missing data \(\theta \), we can use Bayes theorem to infer the posterior distribution of \(\theta \) conditional on D:

\[
P(\theta|D) = \frac{P(\theta)P(D|\theta)}{\int P(\theta)P(D|\theta)d\theta}
\]

- Any feature of the posterior can be expressed as posterior expectations of functions of \(\theta \), i.e. \(f(\theta) \) as:

\[
E[f(\theta)|D] = \frac{\int f(\theta)P(\theta)P(D|\theta)d\theta}{\int P(\theta)P(D|\theta)d\theta}
\]

- These integrals are hard! MCMC provides a way to approximate them!
Using Monte Carlo

- For time-invariant Markov chains, the state will eventually converge to a stationary distribution \(\phi(.) \)
 - As \(k \) increases samples \(\{X_k\} \) will increasingly look like dependent samples from \(\phi(.) \)
 - Initial convergence = \textit{burn-in} (\(m \) iterations)

- We can now use the output from the Markov chain to estimate \(\mathbb{E}[f(X)] \), where \(X \) has distribution \(\phi(.) \):
 \[
 \bar{f} = \frac{1}{n-m} \sum_{t=m+1}^{n} f(X_t)
 \]
 - This is called an \textit{ergodic average}
MCMC

- Problem: we have assumed the following
 - \(\phi(.) \) approximates \(\pi(.) \)
 - But for that to be true, we need to construct a Markov chain in a way that its stationary description is exactly the distribution of interest.

- This is surprisingly easy!!!

- **Hastings-Metropolis algorithm** (Metropolis et al., 1953; Hastings 1970)
Hastings-Metropolis algorithm

- **Iterative procedure**
 - At time t, sample a point Y from proposal distribution $q(.|X_t)$
 - Accept candidate point with probability α:
 $$
 \alpha(X,Y) = \min \left(1, \frac{\pi(Y)q(X|Y)}{\pi(X)q(Y|X)} \right)
 $$

Initialize X_0; set $t = 0$.

Repeat {
 Sample a point Y from $q(.|X_t)$
 Sample a Uniform(0,1) random variable U
 If $U \leq \alpha(X_t,Y)$ set $X_{t+1} = Y$
 otherwise set $X_{t+1} = X_t$
 Increment t
}

}
Hastings-Metropolis algorithm

- Remarkably, the proposal distribution \(q(.|.) \) can have any form!
 - The stationary distribution of the chain will be \(\pi(.) \), i.e. one can prove that \(P^t(X_t|X_0) \) will converge to \(\pi(.) \)
- How do we chose the proposal distribution \(q(.|.) \)?
 - Convergence will depend on relationship between \(q \) and \(\pi \)
 - Exploratory analysis to determine rough form of \(\pi \) necessary
 - Practically, \(q \) should be chosen so that it can be easily sampled and evaluated
 - There are strategies for choosing \(q \)… (see literature on Blohm lab wiki!)
Applications of MCMC

- Estimate parameters of known (or assumed) distributions
 - E.g. Normal distribution $\pi = N(\mu, \sigma | \text{data})$
- Sample randomly from a given distribution
 - Hastings-Metropolis random method will result in random samples of a given distribution
- Nested sampling for model comparison (Skilling, 2006)
- Identify most plausible cause of something among many possible causes (e.g. cryptography, decoding)
- Time series predictions: estimation of Markov transition probability matrix

...