
Intro to Principal Component 

Analysis (PCA) and 

Independent Component 

Analysis (ICA) 



Similarities and Differences 

 Both are statistical transformations 

PCA: information from second order statistics 

 ICA: information that goes up to high order statistics 

 

 Both used in various fields: 

Blind source separation, feature extraction, neuroscience! 



PCA 

Often used prior to running machine learning algorithm 

 Finds principal components of the dataset 

Each succeeding step finds direction that explains most 

variance 

 Transforms data into new subspace 

First axis corresponds to first principal component (explains 

greatest amount of variance in the data) 



Visualizing PCA 

• 2-dimensional data (x1 and x2) 

• 2 (or less) orthogonal principal 

components 

 

• Reframed data 



PCA 

 Principal Components = eigenvectors of covariance matrix 

of original dataset 

 Eigenvectors are orthogonal (covariance matrix is symmetric) 

Principal components correspond to direction (in original 

space) with greatest variance in data 

 Each eigenvector has an associated eigenvalue 

Eigenvalue is a scalar that indicates how much variance 

there is in the data along that principal component 

 If PCA is used for dimensionality reduction, generally discard 

principal components with zero or near-zero eigenvalues 

 



Algebraic Definition of 

Principal Components 

 Sample of n observations, each with p variables: 

𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑝  

 First principal component: 𝑧1 ≡ 𝑎1
𝑇𝑥 =   𝑎𝑖1𝑥𝑖

𝑝
𝑖=1  

Where vector 𝑎1 = 𝑎11, 𝑎21, … , 𝑎𝑝1  st. 𝑣𝑎𝑟[𝑧1] is a maximum 

 kth principal component: 𝑧𝑘 ≡ 𝑎𝑘
𝑇𝑥 =   𝑎𝑖1𝑥𝑖

𝑝
𝑖=1  

Where vector 𝑎𝑘 = 𝑎1𝑘 , 𝑎2𝑘 , … , 𝑎𝑝𝑘  st. 𝑣𝑎𝑟[𝑧𝑘] is a maximum 

Subject to: 𝑐𝑜𝑣 𝑧𝑘 , 𝑧𝑙 = 0 𝑓𝑜𝑟 𝑘 > 𝑙 ≥ 1  

And to: 𝑎𝑘
𝑇𝑎𝑘 = 1 



Differences between ICA and PCA 

 PCA removes correlations, but not higher order dependence 

 ICA removes correlations and higher order dependence 

 PCA: some components are more important than others (recall 

eigenvalues) 

 ICA: all components are equally important 

 PCA: vectors are orthogonal (recall eigenvectors of covariance 

matrix) 

 ICA vectors are not orthogonal 



 



Algebra Behind ICA 

 Assume there exist independent signals: 𝑆 = [𝑠1 𝑡 , 𝑠2 𝑡 , … , 𝑠𝑁 𝑡 ] 

 Linear combinations of signals: 𝑌 𝑡 = 𝐴 𝑆(𝑡) 

 Both A and S are unknown 

 A is called the mixing matrix 

 Goal of ICA: recover original signals, S(t) from Y(t) 

 Ex. find a linear transformation, L, ideally A-1 st. LY(t) = S(t) 



ICA 

 Generally, preprocess data before applying ICA to remove 

correlation (“whitening”) 

 PCA is one way to whiten signals 

 Address higher order dependence 


