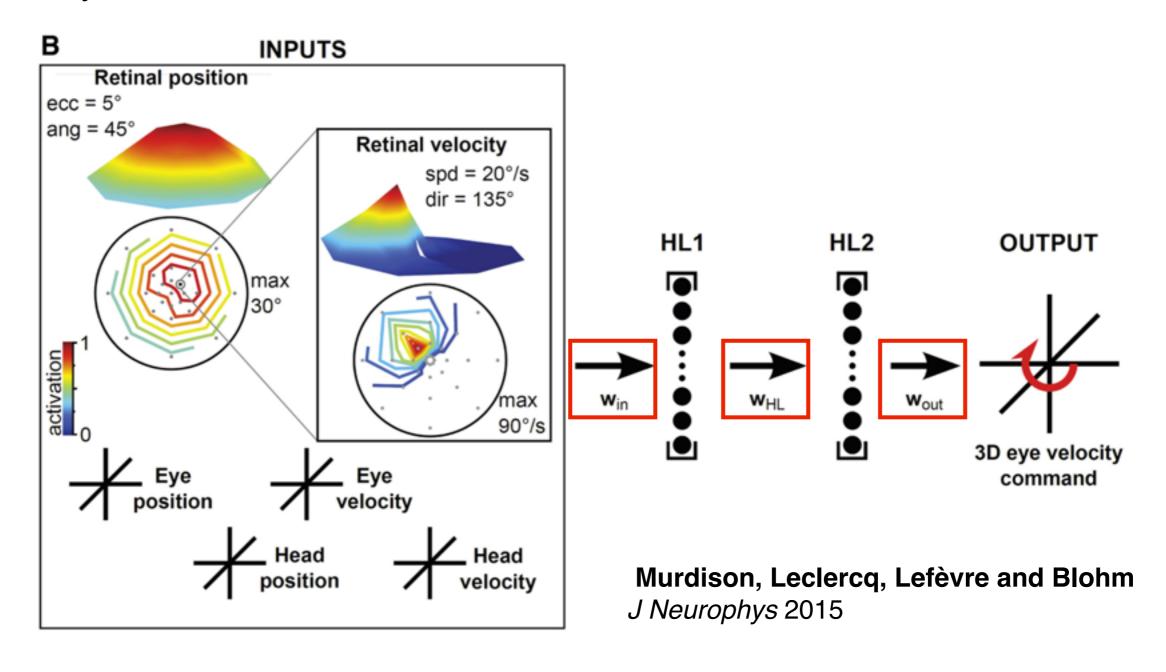
Rate-based artificial neural networks and error backpropagation learning

Scott Murdison Machine learning journal club May 16, 2016



Some problems are just too complicated (i.e. nonlinear) to solve with simple programming...

Computer vision/audition applications:

- digit recognition
- facial recognition
- reading
- speech recognition
- object recognition

Others:

- detection of medical disorders
- industrial process control
- stock market predictions
- the list goes on...

Could theoretically write a program to solve each of these problems, but the rules governing such a program would be incredibly complicated!

Geoff Hinton sweet intro vid

Some problems are just too complicated to solve with simple programming...

Computer vision/audition applications:

facial recognition

In the Fall of 1992, for a class project in Artificial Intelligence, I designed a neural network to locate facial features in images. The one hundred images I used came from the underclassmen section of the 1987 University High School yearbook. They were scanned in at 96 by 128 resolution. I set four of the images aside to comprise the testing set, and for the remaining ninety-six I manually specified the coordinates of the left eye, right eye, nose, and mouth.

Paul Debevec. A Neural Network for Facial Feature Location. UC Berkeley CS283 Project Report, December 1992. http://www.debevec.org/FaceRecognition/

Some problems are just too complicated to solve with simple programming...

Computer vision/audition applications:

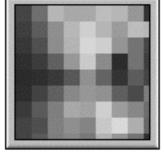
- facial recognition

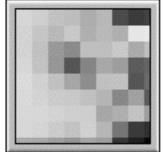
manually located left eye, nose and mouth

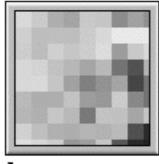
Training Set Image

polar-transformed images around each feature

Log-polar maps of left eye, nose, and mouth







8 by 8 subsamples of the above maps

Paul Debevec. A Neural Network for Facial Feature Location. UC Berkeley CS283 Project Report, December 1992. http://www.debevec.org/FaceRecognition/

subsampled images to feed to neural network ... Why?

A. Avoids local minima

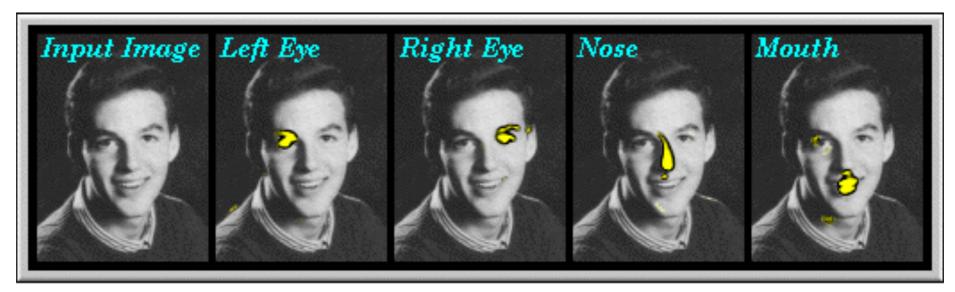
B. 4**M**B RAM in 1992 = \$150 USD

Machine learning - NNets and backprop

Some problems are just too complicated to solve with simple programming...

Computer vision/audition applications:

- facial recognition



Neural network outputs for a previously unseen face

After training a simple, feedforward network with backprop using yearbook photos it could successfully detect each eye, nose and mouth in previously unseen photo!

Paul Debevec. A Neural Network for Facial Feature Location. UC Berkeley CS283 Project Report, December 1992. http://www.debevec.org/FaceRecognition/

The choice for rate-based over spiking for machine learning

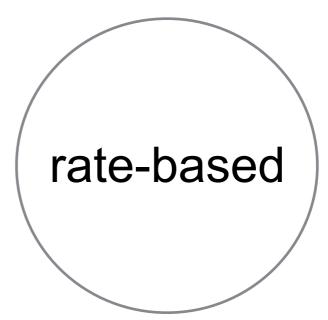
Pros

neuron-level resolution time-resolved (spiking dynamics, variability) several levels of abstraction available (H-H, leaky integrate-and-fire, Izhikevich)

Cons

computationally expensive for large populations of neurons intractable for simulations of whole brain areas

not obviously useful for machine learning



Pros

describes average firing of functional populations of neurons computationally cheap can address network structure/function mathematical simplicity

Universal function approximator

Cons

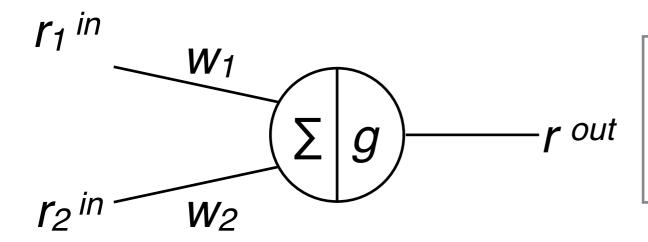
lose benefits of spiking spatiotemporal resolution

averages over timing/dynamics/variability/etc.

biological analogs not always obvious

General architecture

Simplest network is the perceptron



Transfer function $g(\sum)$

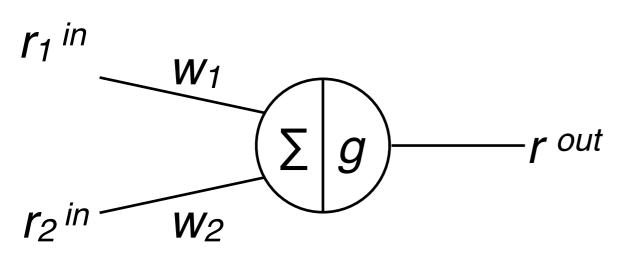
general engineering term used to describe output of some processing unit as a function of input

if
$$r_i^{in} = x_i$$
 and $r^{out} = y$
then $y = g(w_1 \cdot x_1 + w_2 \cdot x_2)$
and if $g(\sum) = \sum (i.e. \ g$ is purely linear)
then $y = w_1 \cdot x_1 + w_2 \cdot x_2$

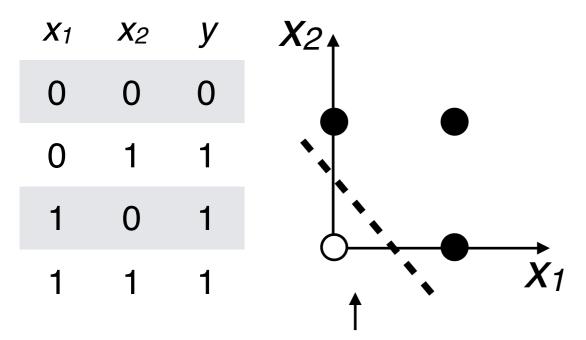
General single-layer mapping

$$r_i^{out} = g(\sum_i w_{ij} r_j^{in}) \Leftrightarrow \mathbf{r}^{out} = g(\mathbf{w}\mathbf{r}^{in})$$

The XOR problem



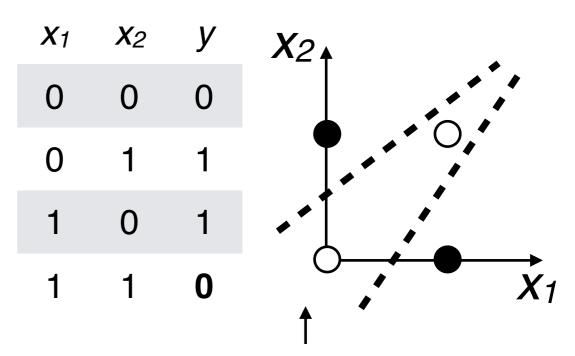
Boolean OR



linearly separable: can be easily separated with single threshold!

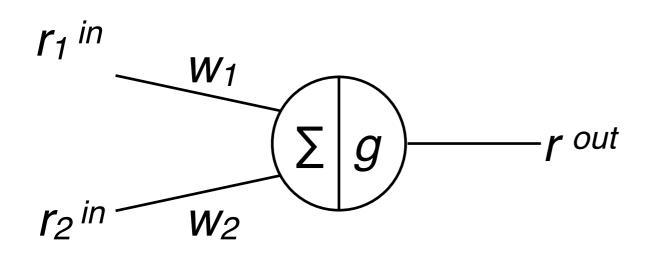
$$g(x) = \begin{cases} 1 & \text{if } x > \Theta \\ 0 & \text{else} \end{cases}$$

XOR

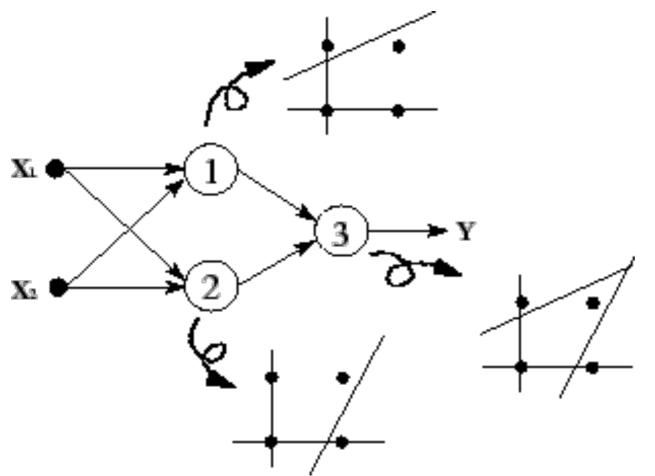


not linearly separable: more complicated!

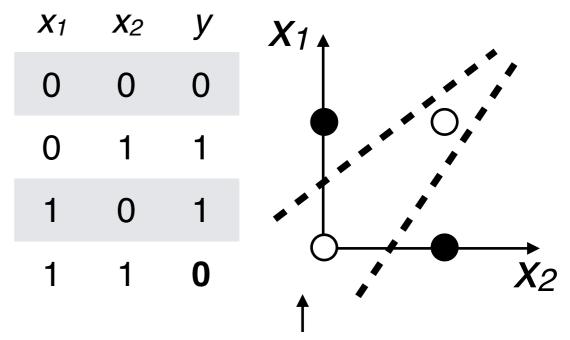
The XOR problem



becomes



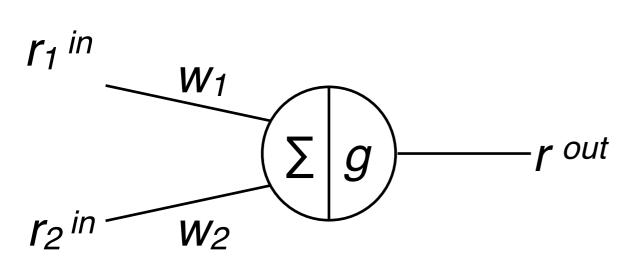
XOR



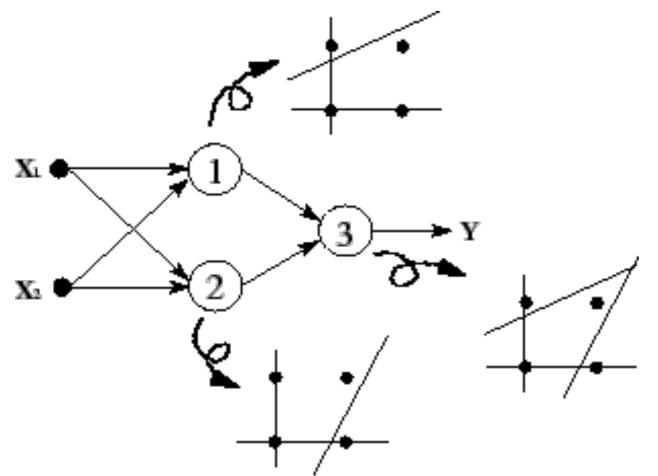
not linearly separable: more complicated!

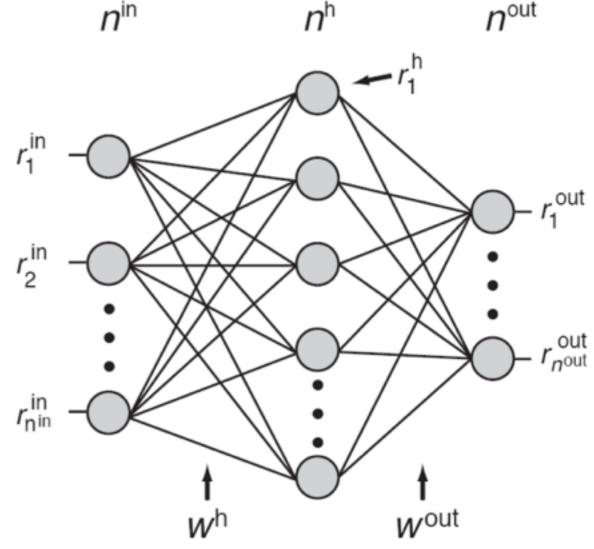
With enough hidden units, multilayer perceptron is the universal function approximator!

The XOR problem



becomes

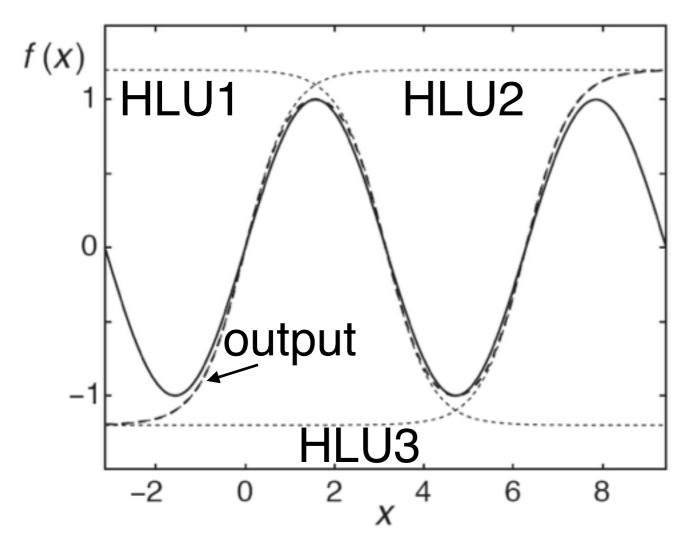




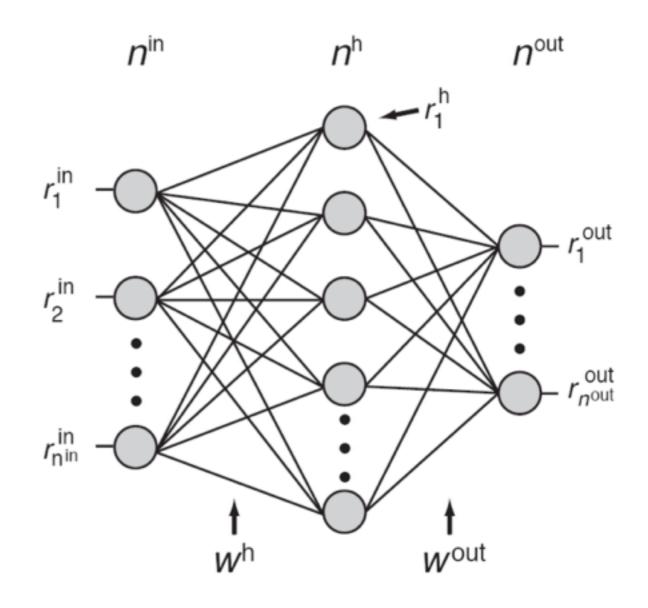
Trappenberg 2010

With enough hidden units, multilayer perceptron is the universal function approximator!

Multi-layer perceptron



E.g. sine wave approximation using logistic transfer function



Trappenberg 2010

With enough hidden units, multilayer perceptron is the universal function approximator!

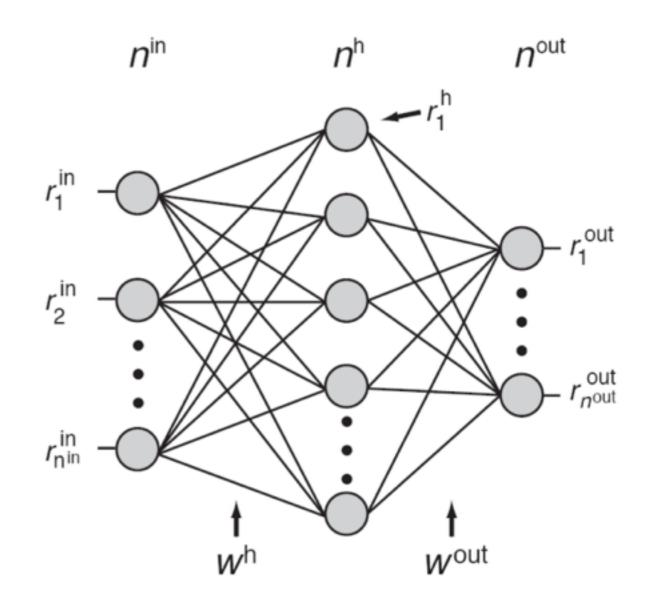
Multi-layer perceptron

Limitations

- Brain-like performance doesn't equate with actual performance
- Training rules are non-physiologic

Strengths

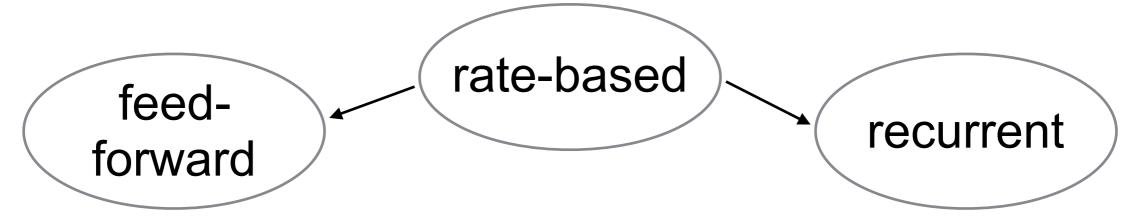
- Hidden layer activity might resemble brain function (with appropriate inputs/outputs)
- Brain = mapping network
- Self-Organization, like the brain
- High flexibility in possible computations



Trappenberg 2010

Point: MLP is usually good for machine learning purposes, but is not necessarily good for neuroscience theory all the time!

Two types of NNets



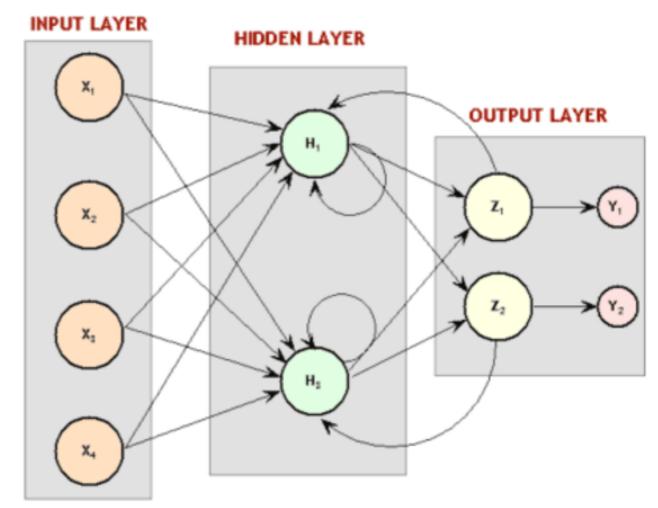
Feed-forward: information *only* flows forward, simplest connectivity

HIDDEN LAYER

OUTPUT LAYER

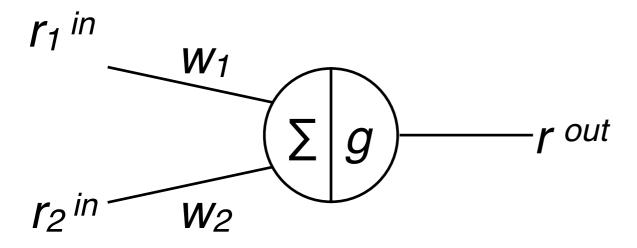
| H₁ | V₁ | V₂ | V₃ | V₄ |

Recurrent: information can flow forward and backward, useful for time-resolved problems



How do we train a neural network?

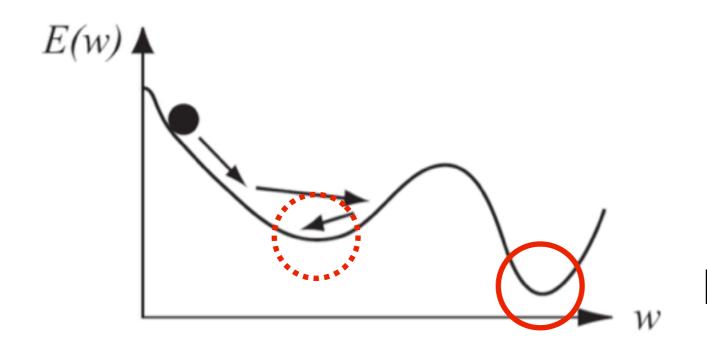
Minimize some cost function... gradient descent!



MSE

$$E = \frac{1}{2} \sum_{i} (r_{i}^{out} - y_{i})^{2}$$

desired output (data, training set)

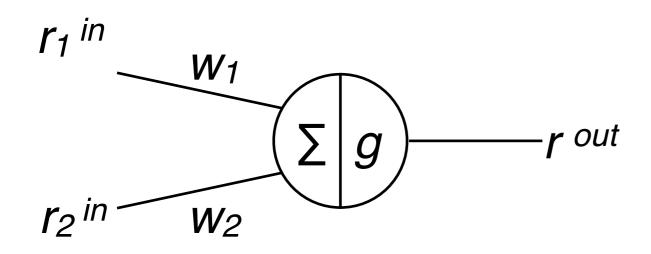


$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

$$\Delta w_{ij} = -\varepsilon \left(\frac{\partial E}{\partial w_{ij}}\right)$$
 learning gradient of MSE rate wrt weights

wrt weights

How do we train a neural network?



$$E = \frac{1}{2} \sum_{i} (r_i^{out} - y_i)^2$$

$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$

$$\Delta w_{ij} = -\varepsilon \left(\frac{\partial E}{\partial w_{ij}} \right)$$

$$\frac{\partial E}{\partial w_{ij}} = \frac{1}{2} \frac{\partial}{\partial w_{ij}} \sum_{i} \left(g\left(\sum_{j} w_{ij} r_{j}^{in}\right) - y_{i}\right)^{2}$$
 change in weight i,j depends on learning rate and dependence error on weight change at i,j

on learning rate and dependence of error on weight change at i,j

$$\frac{\partial f}{\partial w_{ij}} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial w_{ij}}$$

error's dependence on weight i,j, rewritten using MSE equation

(using chain rule)

$$\Delta w_{ij} = \varepsilon \left(g'(h_i) \left(y_i - r_i^{out} \right) r_j^{in} \right)$$
 learning rule (derivation?)

Adding layers...

Start by finding the output rates... 2-layer (1 hidden) perceptron

$$\mathbf{r}^{out} = g\left(\mathbf{w}^{out}\mathbf{r}^h
ight) \ r_i^{out} = g\left(\sum_j w_{ij}^{out}r_j^h
ight)$$

$$E = rac{1}{2} \sum_i \left(r_i^{out} - y_i
ight)^2$$
 $\Delta w_{ij} = oldsymbol{arepsilon} \left(g' \left(h_i
ight) \left(y_i - r_i^{out}
ight) r_j^{in}
ight)$

$$\mathbf{r}^{out} = g^{out}(\mathbf{w}^{out}g^h(\mathbf{w}^h\mathbf{r}^{in}))$$

3-layer (2 hidden) perceptron

$$\mathbf{r}^{out} = g^{out}(\mathbf{w}^{out}g^{h_{out-1}}(\mathbf{w}^{h_{out-1}}g^{h_{out-2}}(\mathbf{w}^{h_{out-2}}\mathbf{r}^{in})))$$

n-layer (n-1 hidden) perceptron

$$\mathbf{r}^{out} = g^{out}(\mathbf{w}^{out}g^{h_{out-1}}(\mathbf{w}^{h_{out-1}}g^{h_{out-2}}(\mathbf{w}^{h_{out-2}}...g^{h_{out-n+1}}(\mathbf{w}^{h_{out-n+1}}g^{h_{out-n+1}}g^{h_{out-n}}(\mathbf{w}^{h_{out-n}}\mathbf{r}^{in})))))$$

Idea is to nest each layer's output rates within the next...

Training through the layers...

Generalized delta rule (output wts)

$$\frac{\partial E}{\partial w_{ij}^{out}} = \frac{1}{2} \frac{\partial}{\partial w_{ij}^{out}} \sum_{i} (r_i^{out} - y_i)^2
= \delta_i^{out} r_j^h$$

$$E = \frac{1}{2} \sum_{i} (r_i^{out} - y_i)^2$$

$$oldsymbol{\Delta}w_{ij}=oldsymbol{arepsilon}\left(g'\left(h_{i}
ight)\left(y_{i}-r_{i}^{out}
ight)r_{j}^{in}
ight)$$

with

$$\delta_i^{out} = g^{out} \cdot (h_i^h) \left(r_i^{out} - y_i \right)$$
 delta rule for output weights

Hidden layer weights Error propagates BACKWARDS through the layers!

$$\begin{split} \frac{\partial E}{\partial w_{ij}^{h}} &= \frac{1}{2} \frac{\partial}{\partial w_{ij}^{h}} \sum_{i} (r_{i}^{out} - y_{i})^{2} \\ \frac{\partial E}{\partial w_{ij}^{h}} &= \frac{1}{2} \frac{\partial}{\partial w_{ij}^{h}} \sum_{i} (g^{out} (\sum_{j} w_{ij}^{out} g^{h} (\sum_{k} w_{jk}^{h} r_{k}^{in})) - y_{i})^{2} \\ &= \delta_{i}^{h} r_{j}^{in} \end{split}$$

with

$$oldsymbol{\delta}_i^{\scriptscriptstyle h} = g^{\scriptscriptstyle h}$$
 , $(h_i^{\scriptscriptstyle in}) \sum_{\scriptscriptstyle k} w_{ik}^{\scriptscriptstyle out} oldsymbol{\delta}_k^{\scriptscriptstyle out}$

delta rule for hidden wts $\delta_i^h = g^h \cdot (h_i^{in}) \sum_i w_{ik}^{out} \delta_k^{out}$ (depends on delta rule for output wts)

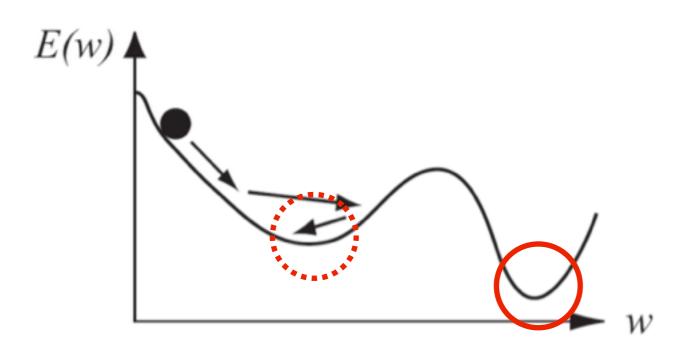
Training protocol (gradient descent)

Training set

Test set

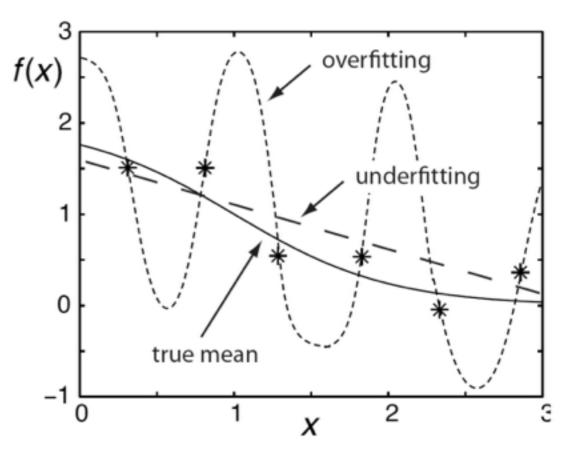
- 1. Train until gradient of error function reaches minimum.
 - **A. Batch:** use full training set with each iteration (smooth convergence, but more prone to local minima)
 - **B. Online:** use different sample of training set with each iteration (more memory efficient, but messy convergence)
- 2. Test generalization of network using previously unseen test data set.

Caveats



Local minima

Can use momentum term in weight update to incorporate history of weight changes.



Trappenberg 2010

Overfitting

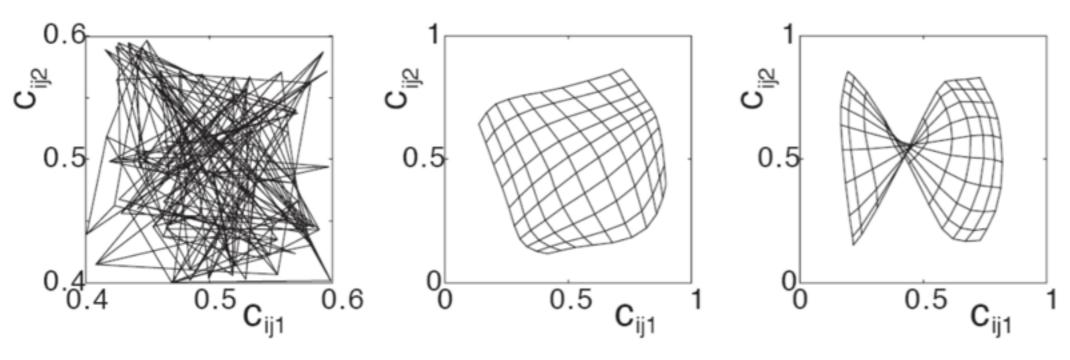
Use heuristics to determine appropriate number of nodes for solving particular problem. Can usually use 2*number of nodes for training set.

Recurrent networks are a whole new game!

but I'll spare you

B. After 1000 training steps C

C. Topographical defect



Backprop. through time (BPTT)

$$\mathbf{a}_{t}$$
 \mathbf{x}_{t} \mathbf{y}_{t+1}

Trappenberg 2010

$$\mathbf{a}_{t} \xrightarrow{\mathbf{A}_{t+1}} \begin{bmatrix} \mathbf{a}_{t+1} \xrightarrow{\mathbf{A}_{t+2}} \\ \mathbf{x}_{t} \xrightarrow{\mathbf{A}} \end{bmatrix} \xrightarrow{\mathbf{A}_{t+2}} \begin{bmatrix} f_{3} \\ \end{bmatrix} \xrightarrow{\mathbf{X}_{t+3}} \mathbf{x}_{t+3} \xrightarrow{\mathbf{G}_{t+3}} \begin{bmatrix} g \\ \end{bmatrix} \xrightarrow{\mathbf{Y}_{t+3}} \mathbf{y}_{t+3}$$