Support Vector Machines

Machine Learning Series

Jerry Jeychandra

Blohm Lab

Outline

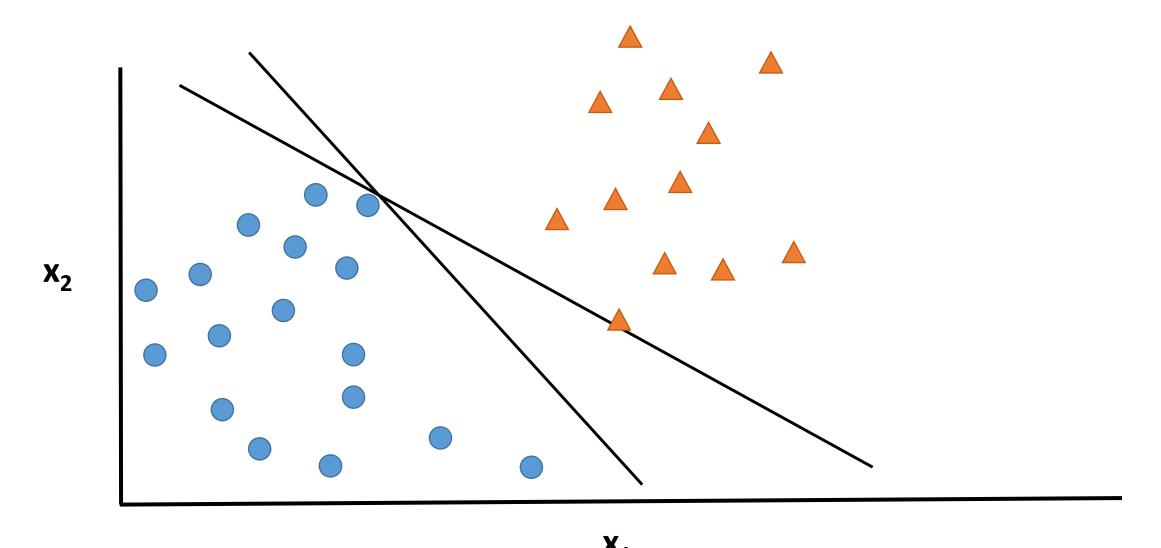
 Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

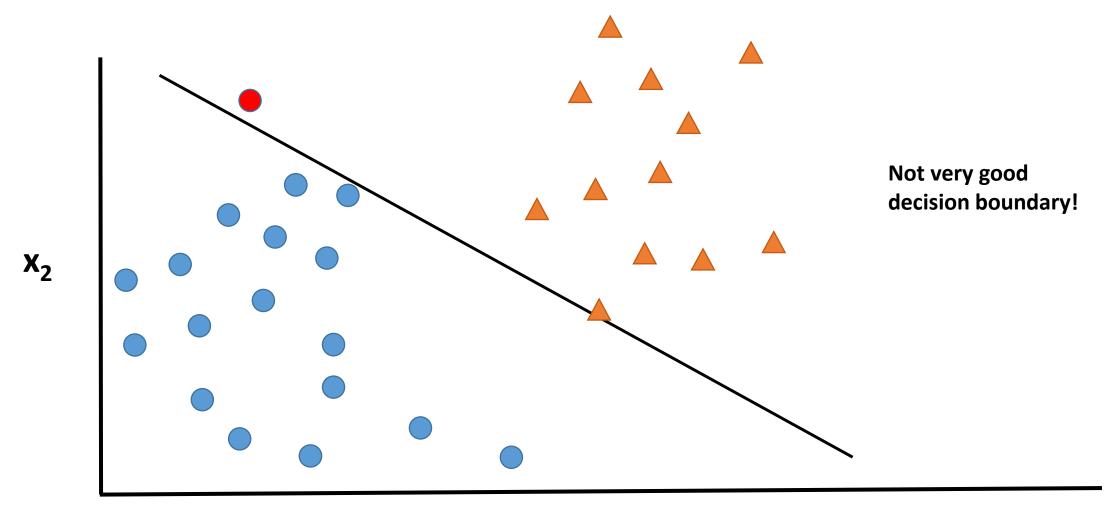
- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment
- 6. Stochastic Gradient Descent (extra)

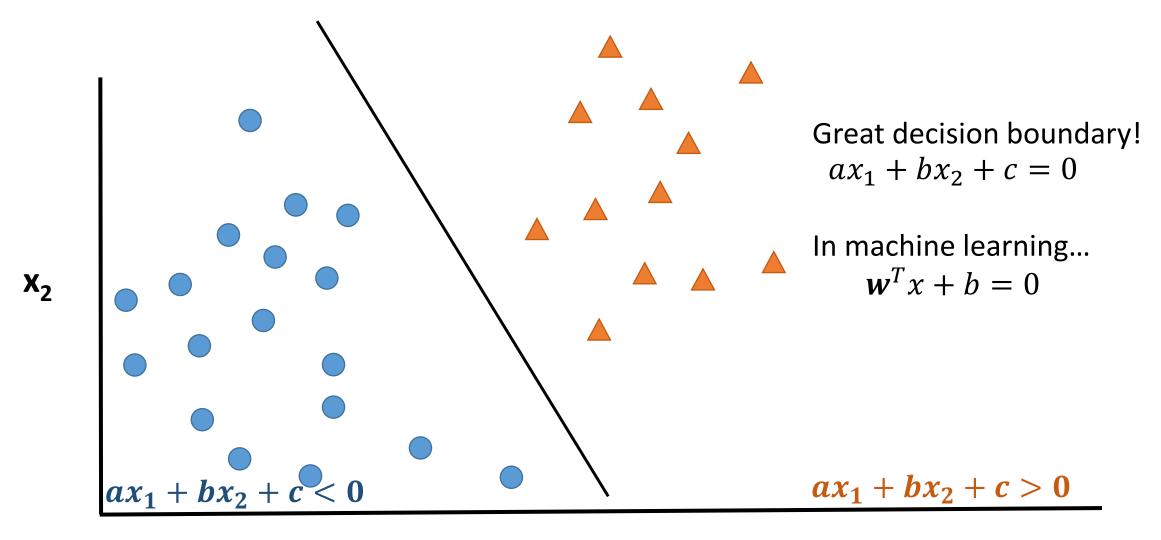
Outline

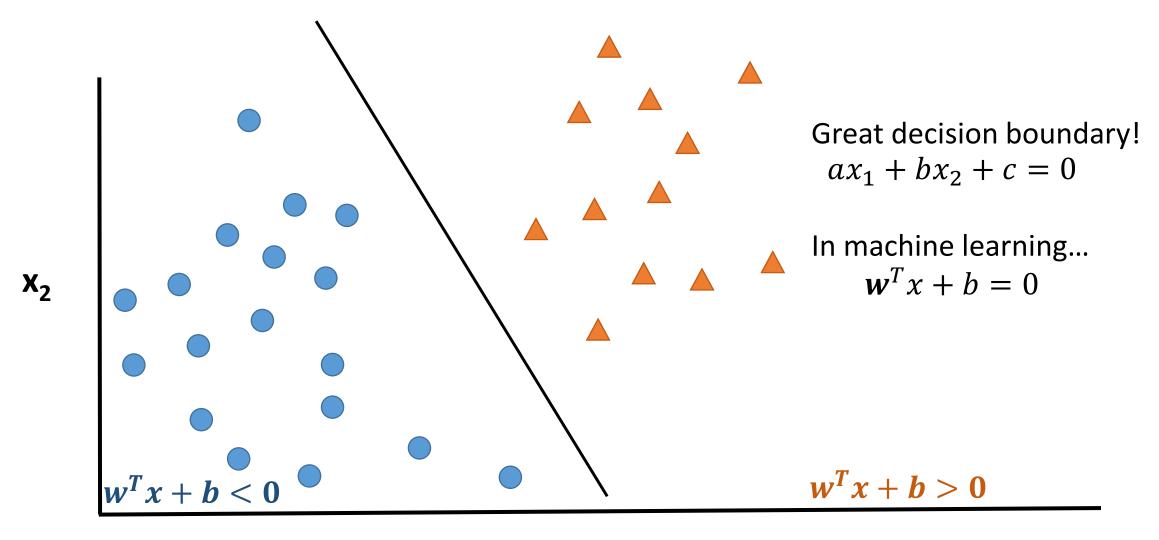
 Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

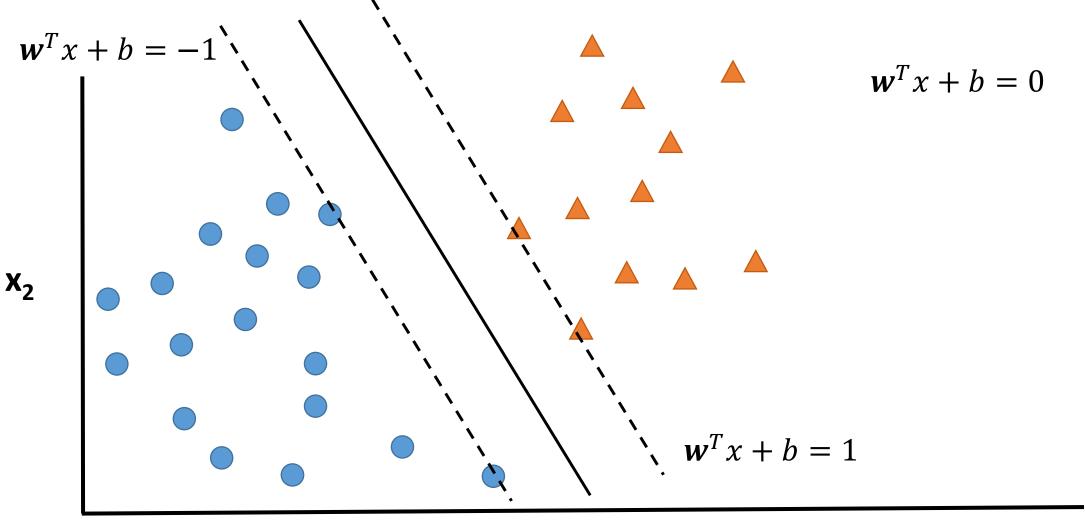
- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment
- 6. Stochastic Gradient Descent (extra)

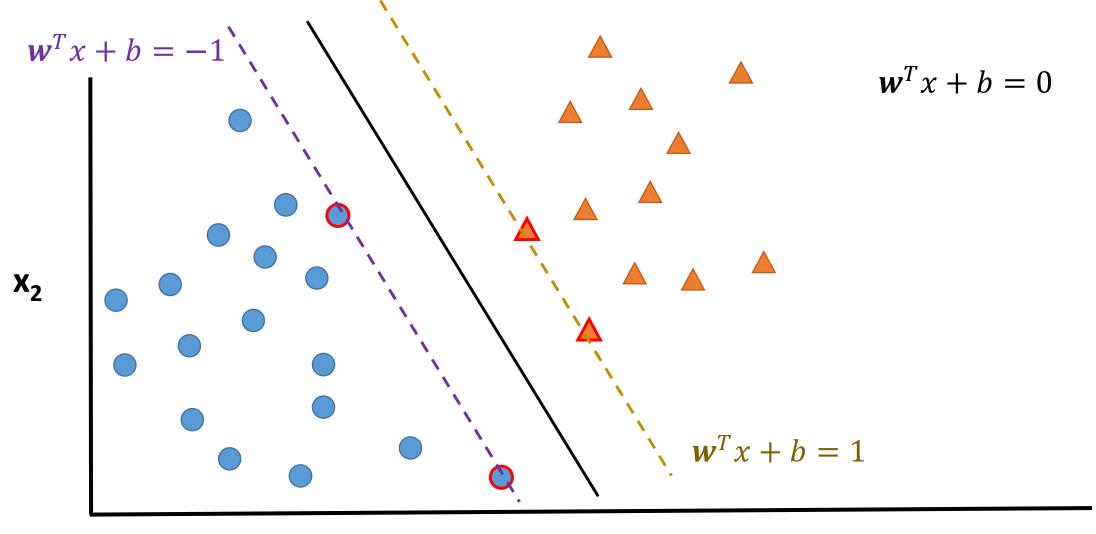


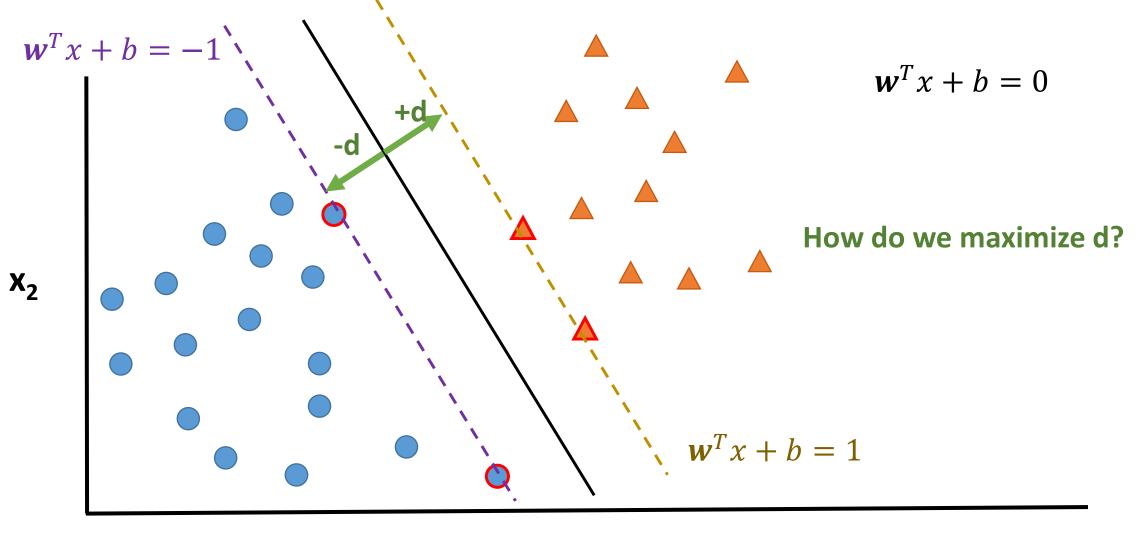


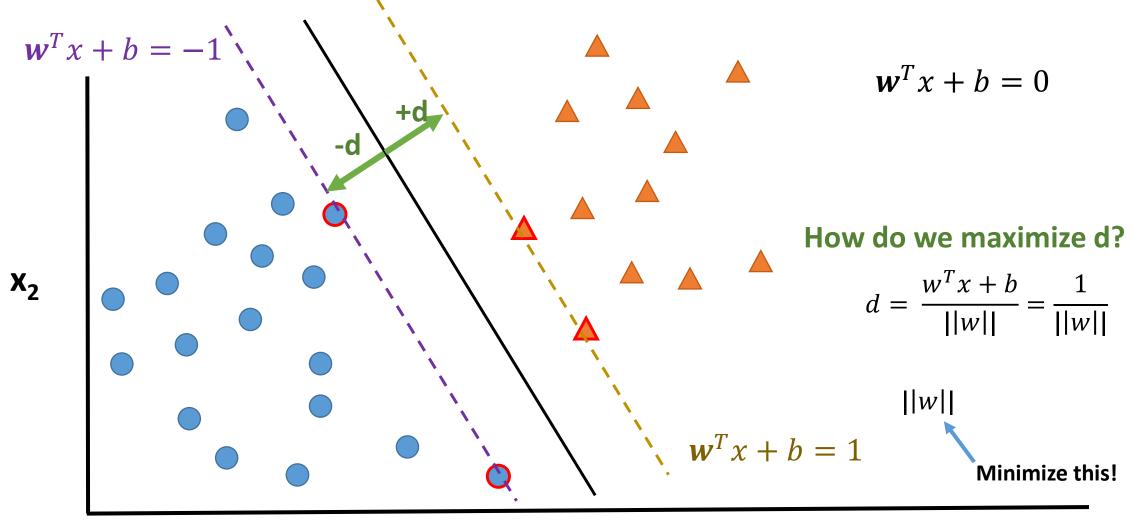


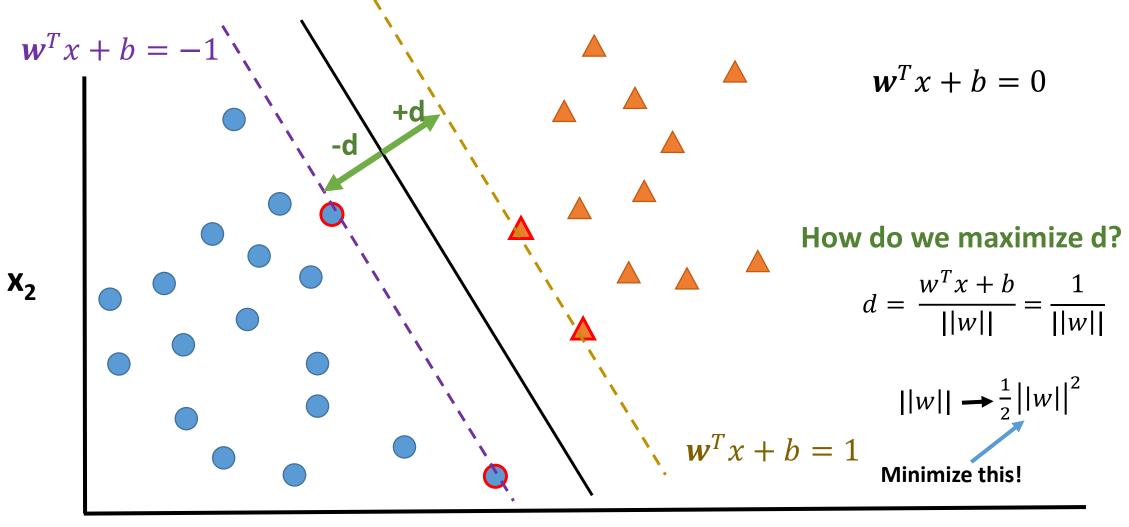












SVM Initial Constraints

If our data point is labelled as y = 1

$$\left(w^T x^{(i)} + b\right) \ge 1$$

If y = -1

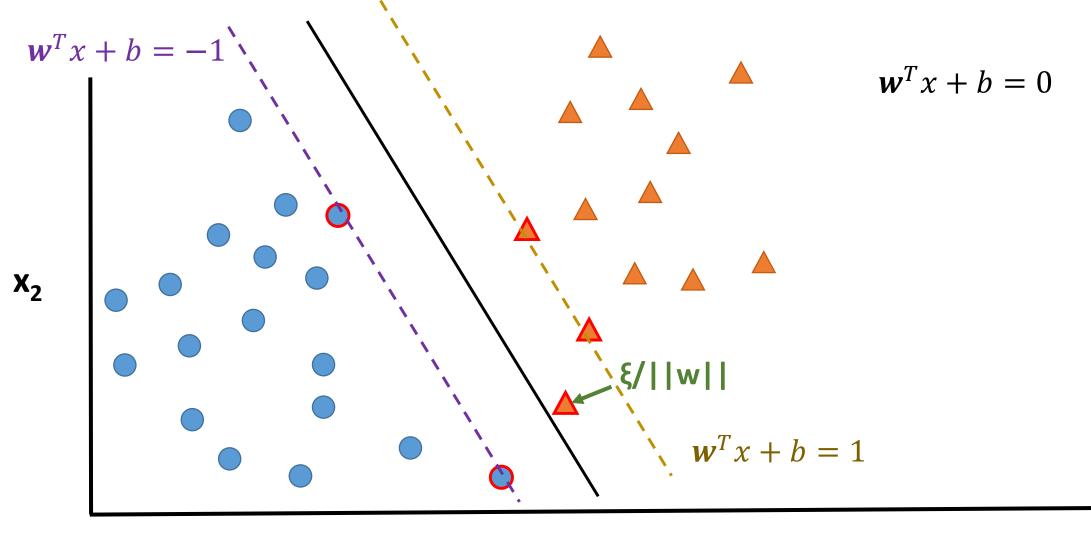
$$\left(w^T x^{(i)} + b\right) \le -1$$

This can be succinctly summarized as:

$$y(w^Tx^{(i)} + b) \ge 1$$
 Hard Margin SVM

We're going to allow for some margin violation:

$$y^{(i)} \left(w^T x^{(i)} + b \right) \ge 1 - \xi_i$$
 Soft Margin SVM
$$-y^{(i)} \left(w^T x^{(i)} + b \right) + 1 - \xi_i \le 0$$



Optimization Objective

Minimize:
$$\frac{1}{2}||w||^2 + C\sum_i^m \xi_i \longleftarrow \text{Penalizing Term}$$
 Subject to:
$$-y^{(i)}(w^Tx^{(i)} + b) + 1 - \xi_i \le 0$$

$$\xi_i \ge 0$$

Outline

• Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment

Optimization Objective

Minimize
$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i \text{ s.t.} -y^{(i)} (w^T x^{(i)} + b) + 1 - \xi_i \le 0$$
 and $\xi_i \ge 0$

Need to use the Lagrangian

Using Lagrangian with inequalities as a constraint requires us to fulfill Karush-Khan-Tucker conditions...

Karush-Kahn-Tucker Conditions

There must exist a w* that solves the primal problem whereas α^* and b* are solutions to the dual problem. All three parameters must satisfy the following conditions:

1.
$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, b^*) = 0$$

$$2. \quad \frac{\partial}{\partial b_i} \mathcal{L}(w^*, \alpha^*, b^*) = 0$$

3.
$$\alpha_i^* g_i(w^*) = 0$$

4.
$$g_i(w^*) \leq 0$$

5.
$$\alpha_i^* \geq 0$$

6.
$$\xi_i \ge 0$$

7.
$$r_i \xi_i = 0$$

Example **x** must lie directly on the functional margin in order for $g_i(w)$ to equal **0**.

Here $\alpha > 0$.

This is our support vectors!

Constraint 3: If α^*_i is a non-zero number, \mathbf{g}_i must be $\mathbf{0}$!

Recall:
$$g_i(\mathbf{w}) = -y^{(i)}(\mathbf{w}^T x^{(i)} + b) + 1 - \xi_i \le 0$$

Optimization Objective

Minimize $\frac{1}{2} ||w||^2 + C \sum_i^m \xi_i$ subject to $-y^{(i)} (w^T x^{(i)} + b) + 1 - \xi_i \le 0$ and $\xi_i \ge 0$ Need to use the Lagrangian

$$\mathcal{L}(x,\alpha) = f(x) + \sum_{i} \lambda_{i} \cdot h_{i}(x) \dots$$

$$\mathcal{L}_{\mathcal{P}}(w,b,\alpha,\xi,r) = \frac{1}{2} ||w||^{2} + C \sum_{i} \xi_{i} - \sum_{i} \alpha_{i} [y^{(i)} (w^{T} x^{(i)} + b) - 1 + \xi_{i}] - \sum_{i} r_{i} \xi_{i}$$

$$\min_{w,b} \mathcal{L}_{\mathcal{P}} = \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{m} \xi_{i} + \sum_{i=1}^{m} \alpha_{i} - \sum_{i=1}^{m} \alpha_{i} y^{(i)} [(w^{T} x^{(i)} + b) + \xi_{i}] - \sum_{i=1}^{m} r_{i} \xi_{i}$$

Optimization Objective

Minimize $\frac{1}{2} ||w||^2 + C \sum_i^m \xi_i$ subject to $-y^{(i)} (w^T x^{(i)} + b) + 1 - \xi \le 0$ and $\xi_i \ge 0$ Need to use the Lagrangian

$$\mathcal{L}(x,\alpha) = f(x) + \sum_{i} \lambda_{i} \cdot h_{i}(x) \dots$$

$$\mathcal{L}_{\mathcal{P}}(w,b,\alpha,\xi,r) = \frac{1}{2} \big| |w| \big|^2 + C \sum_{i} \xi_{i} - \sum_{i} \alpha_{i} \big[y^{(i)} \left(w^{T} x^{(i)} + b \right) - 1 + \xi_{i} \big] - \sum_{i} r_{i} \xi_{i}$$

$$\min_{w,b} \mathcal{L}_{\mathcal{P}} = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i - \sum_{i=1}^{m} \alpha_i y^{(i)} \left[\left(w^T x^{(i)} + b \right) + \xi_i \right] - \sum_{i=1}^{m} r_i \xi_i$$

Minimization function

Margin Constraint

Error Constraint

The problem with the Primal

$$\mathcal{L}_{\mathcal{P}} = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i - \sum_{i=1}^{m} \alpha_i [y^{(i)} (w^T x^{(i)} + b) + \xi_i] - \sum_{i=1}^{m} r_i \xi_i$$

We could just optimize the primal equation and be finished with SVM optimization...

BUT!!!

You would miss out on one of the most important aspects of the SVM The Kernel Trick...

We need the Lagrangian Dual!

Why bother with the dual problem when fitting SVM?

- Given the data points $x_1,\dots,x_n\in\mathbb{R}^d$ and labels $y_1,\dots,y_n\in\{-1,1\}$, the hard margin SVM primal problem is
- $\frac{23}{\text{minimize}_{w,w_0}} \quad \frac{1}{2} w^T w$
 - $\text{s.t.} \quad \forall i: y_i(w^Tx_i+w_0) \geq 1$
- which is a quadratic program with d+1 variables to be optimized for and i constraints. The dual

$$\frac{n}{1}$$
 $\frac{n}{n}$ $\frac{n}{n}$

9 Short answer is kernels. Long answer is keeerneeels (-; – mbq ♦ Dec 1 '11 at 0:26

http://stats.stackexchange.com/questions/19181/why-bother-with-the-dual-problem-when-fitting-svm

Finding the Dual

$$\mathcal{L}_{\mathcal{P}} = \frac{1}{2} \left| |w| \right|^2 + C \sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i - \sum_{i=1}^{m} \alpha_i \left[y^{(i)} \left(w^T x^{(i)} + b \right) + \xi_i \right] - \sum_{i=1}^{m} r_i \xi_i$$

First, compute minimal \mathbf{w} , \mathbf{b} and $\boldsymbol{\xi}$.

Compute minimal
$$\mathbf{W}$$
, \mathbf{b} and $\boldsymbol{\zeta}$.
$$\nabla_{\!\!\!W} \mathcal{L}(w,b,\alpha) = w - \sum_{i=1}^m \alpha_i y^{(i)} x^{(i)} = 0$$
 Substitute in
$$\mathbf{W} = \sum_{i=1}^m \alpha_i y^{(i)} x^{(i)}$$
 New constraint
$$\mathbf{W} = \sum_{i=1}^m \alpha_i y^{(i)} x^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

$$\frac{\partial}{\partial b} \mathcal{L}(w, b, \alpha) = \sum_{i=1}^{m} \alpha_i y^{(i)} = 0 \qquad 0 \le \alpha_i \le C$$

$$\frac{\partial}{\partial \xi} \mathcal{L}(w, b, \alpha) = C - \alpha_i - r_i = 0 \longrightarrow \alpha_i = C - r_i$$
New constraint

Lagrangian Dual

$$\mathcal{L}_{\mathcal{P}} = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i + \sum_{i=1}^{m} \alpha_i - \sum_{i=1}^{m} \alpha_i y^{(i)} \left[\left(w^T x^{(i)} + b \right) + \xi_i \right] - \sum_{i=1}^{m} r_i \xi_i$$

$$w = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$$

$$\mathcal{L}_{\mathcal{D}} = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \langle x^{(i)} \cdot x^{(j)} \rangle$$

s.t

 $\forall i: \sum_{i=1}^{m} \alpha_i y^{(i)} = 0, \xi \ge 0 \text{ and } 0 \le \alpha_i \le C \text{ (from KKT and prev. derivation)}$

Lagrangian Dual

$$\max_{\alpha} \mathcal{L}_{\mathcal{D}} = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \langle \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)} \rangle$$

- S.T: $\forall i: \sum_{i=1}^m \alpha_i y^{(i)} = 0, \xi \ge 0, 0 \le \alpha_i \le C$ and KKT conditions
- Compute inner product of x⁽ⁱ⁾ and x^(j)
 - No longer rely on w or b
 - Can replace with K(x,z) for **kernels**
- Can solve for α explicitly
 - All values not on functional margin have $\alpha = 0$, more efficient!

Outline

 Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment
- 6. Stochastic SVM Gradient Descent (extra)

Sequential Minimal Optimization

$$\max_{\alpha} \mathcal{L}_{\mathcal{D}} = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \langle \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \rangle$$

• Ideally, hold all α but α_i constant and optimize but:

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0 \longrightarrow \alpha_1 = -y^1 \sum_{i=2}^{m} \alpha_i y^{(i)}$$

• **Solution:** Change two α at a time!

Sequential Minimal Optimization Algorithm

```
Initialize all \alpha to 0
Repeat {
    1. Select \alpha_j that violates KKT and additional \alpha_k to update
    2. Reoptimize \mathcal{L}_{\mathcal{D}}(\alpha) with respect to two \alpha's while holding all
```

}

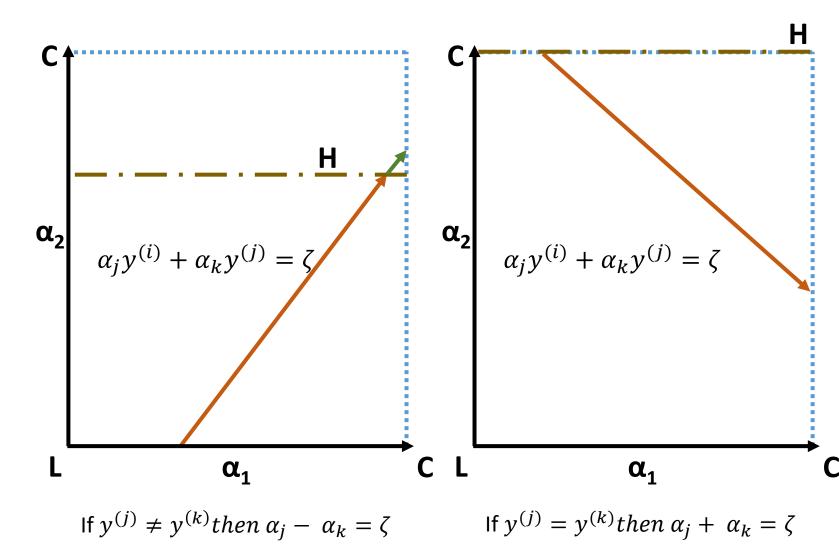
In order to keep
$$\sum_{i=1}^m \alpha_i y^{(i)} = 0$$
 true:
$$\alpha_i y^{(i)} + \alpha_k y^{(j)} = \zeta$$

other α constant and compute w,b

Even after update, linear combination must remain constant!

Sequential Minimal Optimization

- $0 \le \alpha \le C$ from constraint
- Line given due to linear constraint
- Clip values if they exceed C, H or L



Sequential Minimal Optimization

Can analytically solve for new α , w and b for each update step (closed form computation)

$$\alpha_k^{new} = \alpha_k^{old} + \frac{y^{(k)}(E_j^{old} - E_k^{old})}{\eta}$$
 where η is second derivative of Dual with respect to α_2 .

$$\alpha_{j}^{new} = \alpha_{j}^{old} + y^{(k)}y^{(j)}(\alpha_{k}^{old} - \alpha_{k}^{new,clipped})$$

$$b_{1} = E_{1} + y^{(j)}(\alpha_{j}^{new} - \alpha_{j}^{old})K(x^{(j)}, x^{(j)}) + y^{(k)}(\alpha_{k}^{new,clipped} - \alpha_{k}^{old})K(x^{(j)}, x^{(k)})$$

$$b_{2} = E_{2} + y^{(j)}(\alpha_{j}^{new} - \alpha_{j}^{old})K(x^{(j)}, x^{(k)}) + y^{(k)}(\alpha_{k}^{new,clipped} - \alpha_{k}^{old})K(x^{(k)}, x^{(k)})$$

$$b = \frac{b_{1} + b_{2}}{2}$$

$$w = \sum_{i=1}^{m} \alpha_{i}y^{(i)}x^{(i)}$$
Platt 1

Platt 1998

Outline

 Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment
- 6. Stochastic SVM Gradient Descent (extra)

Kernels

Recall:
$$\max_{\alpha} \mathcal{L}_{\mathcal{D}} = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \langle x^{(i)} \cdot x^{(j)} \rangle$$

We can generalize this using a kernel function $\mathbf{K}(x^{(i)}, x^{(j)})!$ $\mathbf{K}(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$

Where ϕ is a feature mapping function.

Turns out that we don't need to explicitly compute $\phi(x)$ due to **Kernel Trick!**

Kernel Trick

Suppose
$$K(x,z) = \left(x^Tz\right)^2$$

$$K(x,z) = \left(\sum_{i=1}^m x^{(i)}z^{(i)}\right) \left(\sum_{j=1}^m x^{(j)}z^{(j)}\right)$$
Representing each feature:
$$K(x,z) = \sum_{i=1}^m \sum_{j=1}^m x^{(i)}z^{(j)}x^{(i)}z^{(j)}$$

$$K(x,z) = \sum_{i,j=1}^m (x^{(i)}x^{(j)})(z^{(i)}z^{(j)})$$
Kernel trick:
$$K(x,z) = \sum_{i,j=1}^m (x^{(i)}x^{(j)})(z^{(i)}z^{(j)})$$
O(n)

Types of Kernels

Linear Kernel

$$K(x,z) = x^T z$$

Gaussian Kernal (Radial Basis Function)

$$K(x,z) = \exp\left(\frac{\left|\left|x - z\right|\right|^2}{2\sigma^2}\right)$$

Polynomial Kernel

$$K(x,z) = (x^T z + c)^d$$

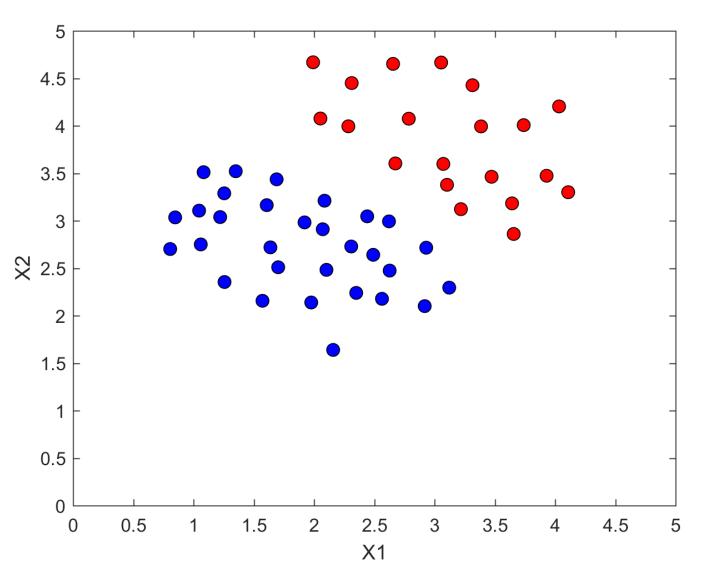
$$\max_{\alpha} \mathcal{L}_{\mathcal{D}} = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} K(x^{(i)}, x^{(j)})$$

Outline

 Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment
- 6. Stochastic SVM Gradient Descent (extra)

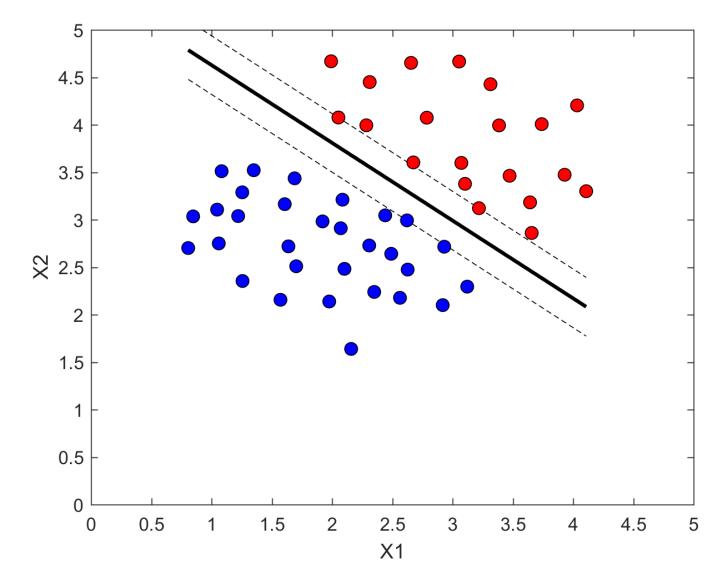
Example 1: Linear Kernel

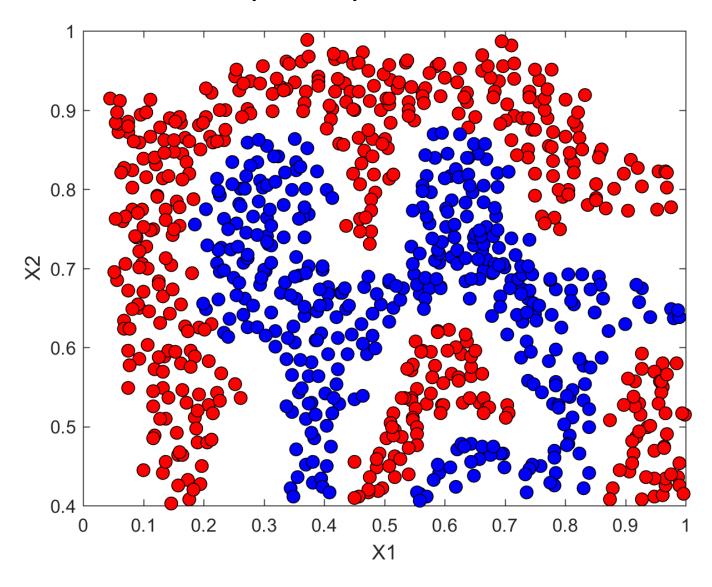


Example 1: Linear Kernel

In MATLAB:
I used symtrain:
model = symTrain(X, y, C,
@linearKernel, 1e-3, 500);

- 500 max iterations
- C = 1000
- KKT *tol* = 1e-3





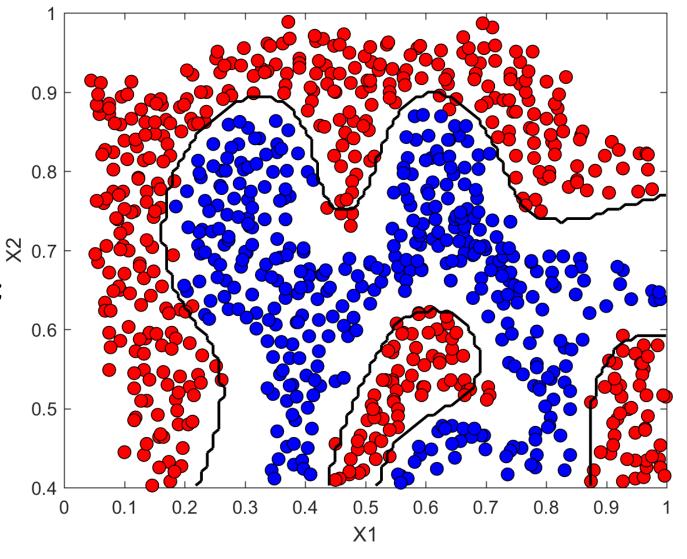
```
In MATLAB

Gaussian Kernel:

gSim = exp(-1*((x1-x2))*
(x1-x2))/(2*sigma^2));
```

model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma), 0.1, 300);

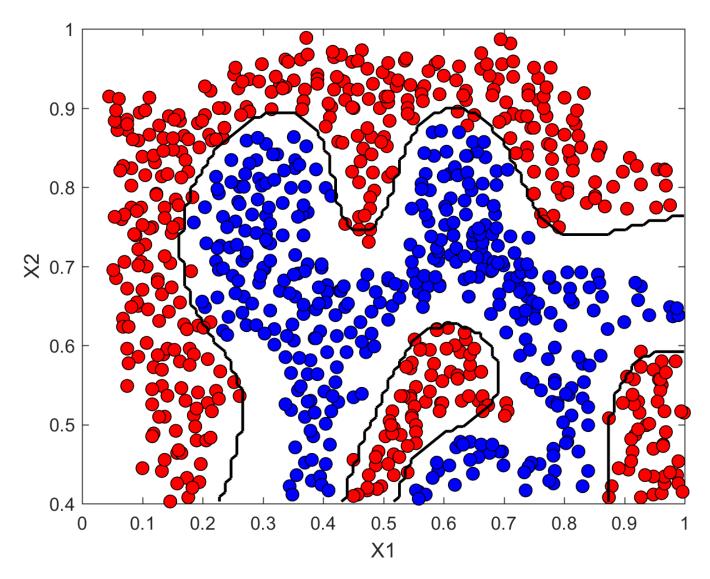
- 300 max iterations
- C = 1
- KKT tol = 0.1



In MATLAB
Gaussian Kernel:
gSim = exp(-1*((x1-x2))*
(x1-x2))/(2*sigma^2));

model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma), 0.001, 300);

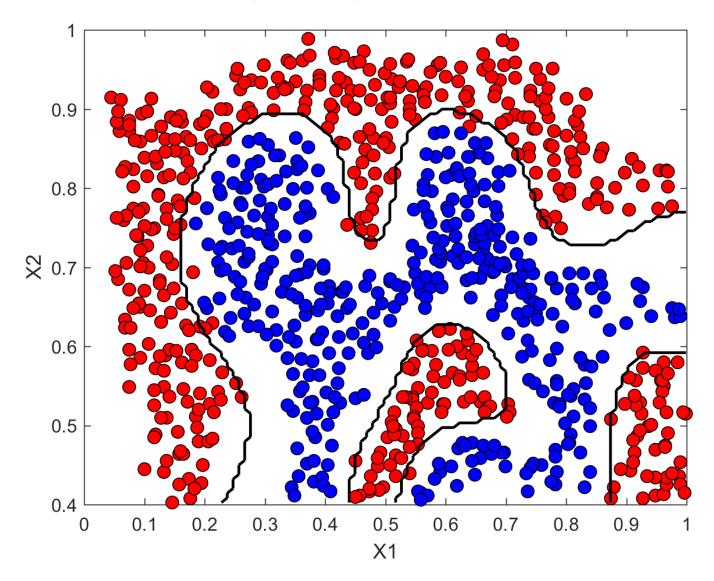
- 300 max iterations
- C = 1
- KKT tol = 0.001



In MATLAB
Gaussian Kernel:
gSim = exp(-1*((x1-x2))*
(x1-x2))/(2*sigma^2));

model= svmTrain(X, y, C, @(x1, x2) gaussianKernel(x1, x2, sigma), 0.001, 300);

- 300 max iterations
- C = 10
- KKT tol = 0.001



Resources

- http://research.microsoft.com/pubs/69644/tr-98-14.pdf
- ftp://www.ai.mit.edu/pub/users/tlp/projects/svm/svm-smo/smo.pdf
- http://www.cs.toronto.edu/~urtasun/courses/CSC2515/09svm-2515.pdf
- http://www.pstat.ucsb.edu/student%20seminar%20doc/svm2.pdf
- http://www.ics.uci.edu/~dramanan/teaching/ics273a winter08/lectures/lecture11.pdf
- http://stats.stackexchange.com/questions/19181/why-bother-with-the-dual-problemwhen-fitting-svm
- http://cs229.stanford.edu/notes/cs229-notes3.pdf
- http://www.svms.org/tutorials/Berwick2003.pdf
- http://www.med.nyu.edu/chibi/sites/default/files/chibi/Final.pdf
- https://share.coursera.org/wiki/index.php/ML:Main
- https://www.youtube.com/watch?v=vqoVIchkM7I

Outline

 Main goal: To understand how support vector machines (SVMs) perform optimal classification for labelled data sets, also a quick peek at the implementational level.

- 1. What is a support vector machine?
- 2. Formulating the SVM problem
- 3. Optimization using Sequential Minimal Optimization
- 4. Use of Kernels for non-linear classification
- 5. Implementation of SVM in MATLAB environment
- 6. Stochastic SVM Gradient Descent (extra)

Hinge-Loss Primal SVM

Recall: Original Problem

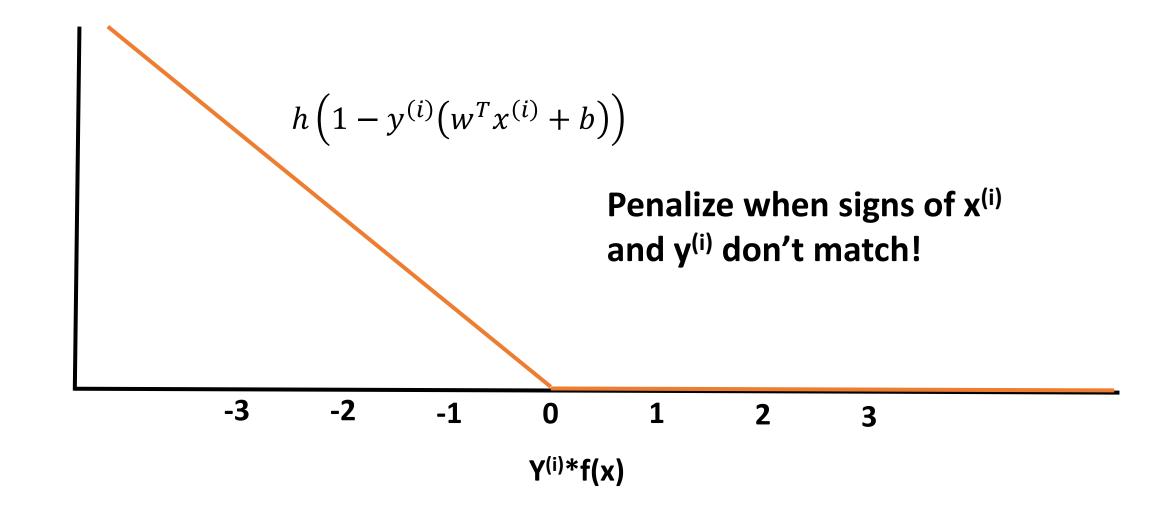
$$\frac{1}{2}w^T w + C \sum_{i=1}^m \xi_i \qquad \text{S.T: } y^{(i)} (w^T x^{(i)} + b) - 1 + \xi \ge 0$$

Re-write in terms of hinge-loss function

$$\mathcal{L}_{\mathcal{P}} = \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{m} h \left(1 - y^{(i)} (w^{T} x^{(i)} + b) \right)$$

Regularization Hinge-Loss Cost Function

Hinge Loss Function



Hinge-Loss Primal SVM

Hinge-Loss Primal

$$\mathcal{L}_{\mathcal{P}} = \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{m} h \left(1 - y^{(i)} (w^{T} x^{(i)} + b) \right)$$

Compute gradient (sub-gradient)

$$\nabla_{w} = \lambda w - \frac{1}{n} \sum_{i=1}^{n} y^{(i)} x^{(i)} L(y^{(i)}(w^{T} x^{(i)} + b) < 1)$$

Indicator function $L(y^{(i)}f(x)) = 0 \text{ if classified}$ correctly $L(y^{(i)}f(x)) = \text{hinge slope if}$ classified incorrectly

Stochastic Gradient Descent

We implement random sampling here to pick out data points:

$$\lambda w - \mathbb{E}_{i \in \mathbb{U}} [y^{(i)} x^{(i)} l(y^{(i)} (w^T x^{(i)} + b) < 1)]$$

Use this to compute update rule:

$$w_{t} \coloneqq w_{t-1} + \frac{1}{t} \left(y^{(i)} x^{(i)} l \left(y^{(i)} \left(x^{(i)T} w_{t-1} + b \right) < 1 \right) - \lambda w_{t-1} \right)$$

Here *i* is sampled from a uniform distribution.