CoSMo 2012: Neuromechanics and Spinal Cord
Muscle Redundancy Matlab Exercise
Jason Kutch, Ph.D. (kutch@usc.edu)

Contents

1 Introduction 1
2 Muscle Redundancy: The nervous system requests biomechanical options 1
2.1 Computational geometryo 2
2.2 Feasible coordination patterns using Monte-Carlo 2
2.3 More Information e 2
3 Muscle Redundancy: The nervous system would like to know what’s best 3
3.1 Minimizing the total amount of muscle force o000 3
3.2 Minimizing the total amount of squared muscle force 3
4 Muscle Redundancy: When would a muscle turn off? 4
5 Motor unit redundancy: Introduction to motor unit force generation 5
6 Motor unit redundancy: Optimizing motor unit activation and ensuing oscillations 5
6.1 Making a motor unit pool model oo 6
6.2 Dynamic MINLP Optimization 6
6.3 Experimental predictionso 6

1 Introduction

In the morning lectures, we learned that the nervous system can select from many different muscle coordi-
nation patterns to achieve the same net joint torque. This phenomenon is referred to as muscle redundancy.
We also learned, however, that the set of coordination pattern options available to the nervous system is
not completely wide open. Constraints on coordination pattern selection could play an important role in
understanding neuromuscular disorders.

In this Matlab exercise, we will learn how to analyze muscle redundancy using computational geom-
etry, Monte-Carlo methods, as well as optimization. Note: These exercises require the MATLAB
Optimization Toolbox to run.

2 Muscle Redundancy: The nervous system requests biomechanical options

Before understanding what the nervous system does, it is important to understand what it has to do and
what it could have done. In the context of muscle redundancy, this boils down to specifying the constraints
of the mechanical task, and then describing the complete space of coordination patterns that could have
met the task constraints. In this section, we will work out examples of several different approaches to this
problem.

Typically, the action of multiple muscles is described by a linear mapping between muscle force and
joint torque. The matrix that performs this transformation is called the moment arm matriz, usually

denoted R. The muscle forces are described in a vector f = [fi, fa,,..., fm]? where m is the number of
muscles. The overall torque in an isometric (no movement) task is then

r=Rf (1)

Interestingly, there is a lot to understanding muscle function in this seemingly simple equation.

2.1 Computational geometry

Linear maps, such as Equation (1), have the property that they map convex sets to convex sets. A convex
set is a set of points for which any two points in the set are connected by a straight line. The convexity
property allows us to exactly describe all coordination patterns that would produce a given joint torque.

Open the Databaser, and select Load Config in the User menu. Select CoSMo02012_Examplel.mat.
In “Refine results, Model, and Publish”, select the function “Stepl_TwoMuscleVertexEnumeration”, and
press the “Publish” button. This will prompt you for a desired torque, and launch a result figure. You will
see an xy plot of force in 1 muscle against force in a second muscle. The red box represents all permissible
muscle force combinations if there were no constraints of the task. The blue points represent the vertices
of the intersection of the red box with the constraints imposed by the task. The line connecting the two
points has been called the “task-specific activation set”, and it shows all muscle coordination patterns
that would produce the same net joint torque. Notice that there are an infinite number of such muscle
coordination patterns, but they are defined by a finite number of vertices.

You can use “Stepla_ChangeTwoMuscleModel” to modify the parameters of the two muscle model,
which are the maximum muscle forces and the moment arms of the the muscles about the joint.

Exercise 1: Make the two muscle agonists, meaning that they produce torque in the same
direction. Vary the desired torque and explain graphically whether a muscle must be used for a
task (it is necessary) or whether the task could be achieved without the muscle (it is redundant).

“Stepl_TwoMuscleVertexEnumeration.” has been carefully documented for your convenience. Look at
it carefully and understand how it works. Everything that has been shown here works for an arbitrary
number of muscles, but the number of vertices of the task-specific activation set grows exponentially in
the number of muscles, making this analytical solution infeasible by about 14 or so muscles. Fortunately,
there is a numerical work-around (see the next section).

2.2 Feasible coordination patterns using Monte-Carlo

Another approach that can be used when the number of muscles in your model is very large is to use
Monte-Carlo sampling with “smart” rejection. This procedure is compared with the analytical method
using the function “Step2_TwoMuscleMonteCarlo.m”. Running this function will give you white crosses
along the subspace derived analytically by vertex enumeration.

Exercise 2: Play with the number of desired coordination patterns, and determine if they
uniformly cover the analytically-derived subspace (i.e. does the numerical method give you an
adequate representation of the underlying subspace. Bonus: how does the Monte-Carlo method
do when the number of muscles, i.e. the dimension of the problem, increases

2.3 More Information

Further reading on this topic can be found in these papers, as well as the references therein:

1. Kutch JJ, and Valero-Cuevas FJ. Muscle redundancy does not imply robustness to muscle dysfunc-
tion. J Biomech 44: 1264-1270, 2011. Click for PDF

2. Kutch JJ, and Valero-Cuevas FJ. Challenges and New Approaches to Proving the Existence of Muscle
Synergies of Neural Origin. PLoS Comput Biol 8: €1002434, 2012. Click for PDF

3. Bunderson NE, Burkholder TJ, and Ting LH. Reduction of neuromuscular redundancy for postural
force generation using an intrinsic stability criterion. J Biomech 41: 1537-1544, 2008. Link to Article

3 Muscle Redundancy: The nervous system would like to know what’s best

Now that we have shown how to derive all possible solutions that the nervous system could use, it is
appropriate to ask what coordination pattern the nervous system would pick given different cost functions.
Let’s stay with the example of two agonists and see what would be best given different cost functions.
The important thing to understand here is that cost functions that superficially seem like they would favor
the same coordination pattern actually make different predictions. For a discussion of cost functions for
predicting muscle coordination patterns, see (Buchanan TS, and Shreeve DA. An evaluation of optimization
techniques for the prediction of muscle activation patterns during isometric tasks. J Biomech Eng-Trans

ASME 118: 565-574, 1996. Click for PDF)

3.1 Minimizing the total amount of muscle force

You might first guess that the nervous system would want to exert as little force as possible. This could
be formulated as the minimization of a cost function:

miny Z fi (2)
i=1

Exercise 3: Use the function “Step3_TwoMuscleCostFunction” to explore the effect of mini-
mizing the sum of muscle forces. Explore the effect of changing the model parameters, including
the moment arms and the maximum muscle forces.

Well, you are likely to find that force will be shared between the two muscles if all things are equal (moment
arms and max muscle forces), but as soon as anything is unbalanced, this cost function favors 1 muscle
dominating.

3.2 Minimizing the total amount of squared muscle force

You could also guess that the nervous system would want to exert as little energy as possible. If you
stretch an elastic mechanical system, like a spring, the force exerted by that spring is f = —kAx, but the
energy stored in that spring is £ = %k(Ax)z. Therefore, there will be a quadratic relation between force

and energy:
1 f? 1
E=_ki:=_—f° 3
2 k? Qkf (3)
Therefore, you could imagine that minimizing total muscle energy consumed in a contraction would be

equivalent to minimizing the following cost function:

ming E J i2 (4)

http://ampl.usc.edu/Content/Publications/PDF/kutch2011Muscle.pdf
http://ampl.usc.edu/Content/Publications/PDF/kutch2012Challenges.pdf
http://www.sciencedirect.com/science/article/pii/S0021929008000572
http://ampl.usc.edu/Content/Publications/PDF/shreeve1996Evaluation.pdf

Exercise 4: Use the function “Step3_TwoMuscleCostFunction” to explore the effect of min-
imizing the sum of muscle forces compared to minimizing the sum of muscle forces squared,
especially when there are asymmetries in the system like unequal moment arms or maximum
muscle forces.

4 Muscle Redundancy: When would a muscle turn off?

In this section, we will explore a schematic explanation for the results of Kouzaki and Shinohara, among
others, on the switching of muscles during sustained isometric contraction. Open the Databaser and
use the function “Step4_-MuscleSwitching.m”. You can change the parameters of the base model using
“Stepla_ChangeTwoMuscleModel.m”. Edit the parameters of muscle fatigue and recovery by opening the
function “Step4_MuscleSwitching” (right click on it in the list and select Edit Publishing Method) and find
the section “EDIT AS NEEDED”.

By running the function with the default parameters, you should find that activity oscillates back and
forth between muscle 1 and muscle 2 if the target torque is in a medium to low range: too low and the
muscles never fatigue, and too high the muscles can not recover fast enough.

Double click. Quicktime and Adobe Reader req.

PeripheralActivityOscillation.mov
Media File (video/quicktime)

Exercise 5: (Challenging). In order to make the oscillation work, I needed to add a “cross-
coupling” between the two muscles. One muscle checks to make sure that the other is not
recharging before it allows itself a break. Edit the code to scan through sets of parameters to
determine if this cross-coupling is necessary for sustained activity oscillation between the two
muscles.

5 Motor unit redundancy: Introduction to motor unit force generation

Motor units generate force by the temporal summation of twitches. The twitch is the temporal force profile
that occurs within a single motor unit subsequent to stimulation of the muscle fibers by a single spike in
the motoneuron.

\V/ \Y \Y
w/\/m_{wfq/\,,‘/
1 Hz

Figure 1: Single twitches, elicited by repeated stimulation of a single motor axon in human muscle (Thomas CK, Bigland-
Richie B, and Johansson RS. Force-frequency relationships of human thenar motor units. J Neurophysiol 65: 1509-1516,
1991. Link to Article)

When the motor neuron firing rate increases to the point where force does not decay from the previous
spike when the current spike arrives, temporal summation of twitches occurs and force begins to build in
the motor unit. Forces among motor units sum to give the total muscle force.

The standard model for the recruitment of motor units within a muscle is called the Fuglevand Model.
This model is described in Fuglevand AJ, Winter DA, and Patla AE. Models of recruitment and rate
coding organization in motor-unit pools. J Neurophysiol 70: 2470-2488, 1993 Link to Article. This model
assumes that the firing rates of various motor units are coupled by a single descending drive signal, which
gives rise to the standard “Size Principle” of motor unit recruitment. We will play with this model and
some reduced models that predict dynamics of motor unit recruitment during sustained contraction.

Open the Databaser, and select “Choose Class” in the “Refine Results ...” section. Choose the folder
“CoSMo2012Neuromech_MotorUnit”. Click the “+” under “Result(s) and/or Model(s)”, and select “Re-
sultsAndModels/Example2_MotorUnit /FuglevandParameters.mat”. This Matlab datafile contains most of
the parameters from the original Fuglevand paper. Select “Stepl_FuglevandModel.m” and and click “Pub-
lish!”. The program will run the Fuglevand muscle force model for as many different levels of excitation
as possible, and produce a plot showing the firing rate of each motor unit as a function of excitation. The
Fuglevand model also predicts a detailed time series of muscle force, motor unit spike times, and EMG,
which we will explore later.

Exercise 6: (Best done on your own time). Explore the effect of changing various parameters
of the Fuglevand model. You will have to open the “FuglevandParameters.mat” file, edit, and
then save to a file of your choice and then load that file in the Databaser. Pay careful attention
to the “Recruitment Threshold Excitation (RTE)” parameter, which can change a muscle from
“rate coded” to “recruitment coded”).

http://jn.physiology.org/content/65/6/1509.short
http://jn.physiology.org/content/70/6/2470.short

6 Motor unit redundancy: Optimizing motor unit activation and ensuing
oscillations

We want to explore what happens when the motor units are potentially uncoupled, and the nervous system
selects motor unit firing rates through an optimization procedure. As we discussed in class, this is a very
hard computational problem called mixed integer nonlinear programming (MINLP). We can solve this
problem, but not for 120 motor units. So, were going to do it for 5 motor units, which you should actually
think of a 5 groups of 24 motor units, each doing roughly the same thing.

6.1 Making a motor unit pool model

First, we can make a motor unit pool model. This is accomplished using the function
“Step2_MakeMotorUnitPool.m”. When you run this function, it will ask how many motor units you want
in the model (5), what the range of peak force is from the smallest motor unit to the strongest motor
unit (10), and will ask the peak firing rate (30 Hz) of all the units (assumed to be the same in this simple
model. It will then ask you to save these parameters. You should then use the “+” under “Result(s)
and/or Model(s)” to add the file you just created.

6.2 Dynamic MINLP Optimization

Now, having the .mat file that you created selected, select the function “Step2_MotorUnitOrderlyRecruitment.m”
and press Publish. A movie will automatically start in Figure 1. The point of this simulation is to ramp up
muscle force over time, and at each time step, solve the MINLP problem to predict the best combination

of motor units for the amount of muscle force. The firing rates of the motor units will be on top and the
overall muscle force is on the bottom.

Exercise 7: Re-engineering the motor unit model using “Step2_MakeMotorUnitPool.m” and
re-run the “Step3_MotorUnitOrderlyRecruitment” function. See how the choice of motor unit
properties will effect their recruitment.

You can also use the MINLP approach to motor units to explore dynamic recruitment during sustained
contractions at the same level of force. This is what “Step4d_MotorUnitRotation.m” does. It also takes
your motor unit model .mat file as input, and will generate a movie of the motor unit firing rates, overall
force, and energetic cost.

Exercise 8: Using “Step4_MotorUnitRotation.m”, start at 5% maximum, see what happens,
and then increase the force gradually. You should see some wild things.

Here we have been using a very simple model of fatigue; there are actually many ways to model fatigue.
For more complex models, please see (Dideriksen JL, Farina D, and Enoka RM. Influence of fatigue on the
simulated relation between the amplitude of the surface electromyogram and muscle force. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368: 2765-2781,
2010.Link to Article).

6.3 Experimental predictions

We have used this simple model to show that we would expect oscillations in motor unit activity and
metabolic expenditure during a sustained contraction when multiple redundant motor units are available
for rotation. In the lecture, I demonstrated that spike-triggered averaging (STA) shows oscillation in twitch

http://rsta.royalsocietypublishing.org/content/368/1920/2765.short

force magnitude during a sustained contraction in the first dorsal interosseous (FDI), suggesting motor unit
rotation. Someone might ask whether these oscillations would be expected to emerge from STA during a
sustained contraction even if there were no motor unit rotation. Here is a good opportunity to use a simple
model to address this point, and illustrates integration in the Databaser environment between modeling
and data analysis.

Load and select the file “FuglevandParameters.mat” as above. Now run “Step5_FuglevandModel TimeSeries.m”
It should take a few seconds to run, and the program status bar will indicate when it is finished. The
program has run the Fuglevand model and saved the data in exactly the same format as I saved the ex-
perimental data, so the exact same analysis code can be used on both. We will load this simulated data
in just as if it were real experimental data.

From the menubar, select “Experiment ... Open Experiment”. Then choose “Experiments ... Mo-
torUnitRotation”. Next, from the menubar select “Session ... Open Session”. Then choose “P001S001”.
In the “Analyze” section of the program (lower left), select the “+” under “Trials to Analyze”. Under
“...Using function” select “Choose Class” and then “Muscle Switching”. Run “Step0_PlotForceAndEmg”
by either clicking the “Analyze” button or double clicking “Step0_PlotForceAndEmg”. This will just give
you a picture of the simulated force and EMG. Next, run “Stepl_StaOverTime”. This function will bring
up a plot of EMG first. The figure window prompts you to make two clicks. The first should have the
vertical line at the beginning of what you consider the steady portion of the trial (trivial in this case
because the model is completely steady). The horizontal line of the first click should be at the level that
you consider noise. The second click should have the vertical line at the end of what you consider the
steady portion, and the horizontal line at the second click is not used. Once you have made these clicks,
the status indicator will show that it is processing, and when it is finished, you will see plots of spike
amplitude as a function of time, and spike triggered average as a function of time. Notice that under these
conditions of no fatigue and no motor unit rotation, the STA is not expected to vary in time.

	Introduction
	Muscle Redundancy: The nervous system requests biomechanical options
	Computational geometry
	Feasible coordination patterns using Monte-Carlo
	More Information

	Muscle Redundancy: The nervous system would like to know what's best
	Minimizing the total amount of muscle force
	Minimizing the total amount of squared muscle force

	Muscle Redundancy: When would a muscle turn off?
	Motor unit redundancy: Introduction to motor unit force generation
	Motor unit redundancy: Optimizing motor unit activation and ensuing oscillations
	Making a motor unit pool model
	Dynamic MINLP Optimization
	Experimental predictions

