The Bayesian Brain:
the timing of perceptual decisions

Jan Drugowitsch
jan_drugowitsch@hms .harvard. edu

Department of Neurobiology
Harvard Medical School

HARVARD

MEDICAL SCHOOL

CoSMo 2017



Road map

Perceptual decision-making
speed/accuracy trade-off
experiments investigating perceptual decisions
characteristics of behavior

Decision-making models
accumulator / diffusion models
fit to behavior & issues

Normative analysis
simple scenario: task difficulty known
more complex: varying task difficulty
time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-modal decision-making



Source code

Get code/data from
https //github. cumerUQUW1tschLabeuSHn2@1?

 DrugowiiaschLab | CosMa20N7 & o5 Limpachy = Wi B R

CrCody | ISELES o Full reihssis 0 I8 Pepjecis 0 Wik O Bariings naignis «

Daia and soripis for tha CoSko 2007 surmmer sohaool wen

Extract & open folder in Matlab, try Load( *phs_ah.mat’)

Add dm library to path

>> addpath(‘dm-0.3.1/matlab/’)
>> ddm_fpt_example
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Decisions are endemic
Every action is a decision

Requires: identification of choice options
e.g., should I stay, or should | go?
gather knowledge (external/internal) about either option

evaluate choices with respect to expected outcome

e.q., if | stay there will be trouble
if | go there will be double

Main focus today: perceptual decisions
(decisions based on what we observe)

speed? accuracy? underlying process?



Uncertain information

Information we have about the world is uncertain

Uncertainty due to noise and ambiguity

Noisy sensory noise (physical limitations)
discretization (spatial limitations)
noise in the environment

Ambiguous no unique reconstruction of environment
e.g. visual 3D to 2D mapping
mixture of odors




(Little) time contributes to uncertainty

There is no such a thing as an instantaneous percept

Uncertain evidence is accumulated across time / space

Perceptual decisions (at least) require evidence accumulation across time



How much evidence should we accumulate?

More evidence is expected to lead to better decisions - why ever stop?

"

(*MNot to be reproduced”, Magritte, 1937)

Reasons to stop accumulating: evidence/time is costly
world is volatile
evidence “flow” is limited



Costly evidence introduces speed/accuracy trade-off

accumulate evidence over time

-

commit to / execute choice

fast choices «—  speed/accuracy trade-off ——— slow choices

might be inaccurate should be accurate
come at low evidence cost come at high cost



The speed/accuracy trade-off in experiments

Forced choice paradigm

- show two simuli
(sequentially or simultaneously)

- choice is always A or B (or A and notA)
- choice is made (forced) on each trial
- difficulty might vary across blocks or trials

- record reaction time (RT)
choice

Examples
- word vs. non-word decisions
- numerosity judgments

- random dot motion task
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Word vs. non-word decisions

(e.q., Ratcliff, Gomez & McKoon, 2004)



Word vs. non-word decisions

(e.g., Ratcliff, Gomeaz & McKoon, 2004)

stay



Word vs. non-word decisions

(e.g., Ratcliff, Gomeaz & McKoon, 2004)

slan



Word vs. non-word decisions

(e.g., Ratcliff, Gomeaz & McKoon, 2004)

gohm



Word vs. non-word decisions

(e.g., Ratcliff, Gomeaz & McKoon, 2004)

goon



Word vs. non-word decisions

(e.g., Ratcliff, Gomeaz & McKoon, 2004)
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Correct response probability

Uncertainty: processing words / memory
Difficulty: word frequency / phonetic/lexical similarity / ...

Usual findings: decisions faster and more accurate for high-frequency words



Numerosity judgments

(e.g., Ratcliff, 2006)

Examples of Stimuli for the Experiment
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More/less than 50 dots?

Displays closer to 50-dot threshold: slower and less accurate



The random-dot motion task (RDM)

(e.g., Newsome, Britten, Movshon & Shadien, 1989; Roitman & Shadien, 2002)

“eft"? §

51.2% coherence 12.8% coherence

“right”?

“respond as quickly and accurately as possible”

Uncertainty: stimulus is inherently ambiguous

Difficulty: coherence
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Behavior in the random dot motion task

Palmer, Huk & Shadlen (2005) dataset: 6 human subjects performing RDM task

load( ‘phs_[subj_1d].mat’)
(subj_1id € {'ah’, ‘eh’, ‘3d’, ‘jp’, ‘mk’, ‘mm’})

Contains three vector, one element per trial:
choice 0 - "left” / 1 - "right”
rt reaction time in seconds
cohs signed coherence, positive/negative — rightwards/leftwards motion

To become familiar with dataset:
- open plot_psych_chron.min editor

- update line 17 to compute vector corr_cho1ice (0 = incorrect, 1 = correct)
Hint: choice is correct if “right” for rightward motion, “left” for leftward motion



Behavior in the random dot motion task

Computing correct choices

corr_choice = 0.5 * (sign(cohs + le-6) + 1) == choice;

@/1 for leftward/rightward motion

Subject AH chronometric curve Subject JP
g i "FI--._______‘-—L
e ’ —o °

1 psychometric curve .
g 1.8
E 0.7
_ﬂ 0.8
Higher coherence -> faster, better choices N speed/accuracy trade-off

for fixed coherence



Speed/accuracy trade-off in the PHS dataset?

Load("phs_[subj_1d].mat") } per-coherence RT median split

plot_speed_accuracy
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17 12
- 1 g

i i . cal

EX) =1 o

g, g ——

LR il —

i i — ——

Hh.- H-_. T

) &

AR Ak
i [ (1) hE ! (1] i3 [ (1) hE ! (1]
r i 1 — —

il 1.9

B0 308

3. 2. .

ﬂ'... ﬂ'...:
_________________________ :": —— —— —— — — — — — — — — — — — — -
o &) a1 L1k Lid o4 LR - ] \U.‘ L1k Lid o4 LR

S R S R

faster choices also more accurate?

Here, most RT fluctuations driven by fluctuations in stimulus informativeness
(would need to compare fast/slow choices for same stimulus sequence)



Usually skewed reaction time distributions

Try plot_rt_dist and plot_rt_quant
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Features of a successful decision-making model

Fits mean reaction times and
choice probability across conditions

Accounts for variability:
reproduces RT distributions

Reproduces task difficulty influence:
- easy task: fast choices, high accuracy

- hard task: slow choices, low accuracy
(to be revisited)
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Accumulator models

Noisy evidence in small samples of continuous evidence stream

Accumulation to bound

I (t) I(¢t)

X2 (f-]'g
, dx4
T
dl’g
dt 2

Inputs modulated by
coherence, motion direction

0% coherence

p(I|coh)
-4 -
Ii(t) Iz(t)

, >
1)

10% coherence, right

p(Ilcoh)
- e Lt

| TS

Exists in multiple variant, with
discrete (Poisson) inputs,
continuous (Gaussian) inputs, etc.



Accumulator model have their issues

Don’t well reproduce

j reaction-time modulation by difficulty
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The drift diffusion model
(or diffusion decision model; or diffusion modef; Ratcliff, 1978)

Introduced by Ratcliff (1978) as model for memory recall;

one of the most successful models in neuroscience

x1(t) x5 (t)

9 |

* dx
' ' d_tl =h -1 accumulators
- perfectly
dxz _, _, __da | anti-correlated
a % ' dt |

I1(t) I(t)

single decision process




The drift diffusion model

drift  diffusion
standard dev.

|| = mean evidence strength

particle location x(t)

sign(u) = determines correct choice

Il = signal/noise ratio

incorrect choose “left”

drift = K x coherence

accumulating uncertain evidence = stochastic particle motion

l

commit to / execute choice = threshold crossing



Simulating the drift-diffusion model
Using the Euler method:

From continuous-time process...

dx B x(t + ot) — x(t)
el 4 on(t) = o

...to discrete-time simulation

x(t + 6t) = x(t) + udt + Votoz

z ~ N(0,1)
(zero-mean unit-variance
Gaussian random number)

See, for example, sim_ddm.m

Careful: too large 4t cause
biased first-passage time

Drugowitsch (2016)

Alternatives: see dm library



Some diffusion model predictions

2 e
Generated with sim_ddm.m PP gs,. p=9
Lk —tanh(6u),  otherwise
u=70 H
aht) = 1
P(right) = e
(e.g. Palmer, Huk & Shadlen, 2005)

What
Try it

= =] - -1 a 1 2 3 4

et mu

happens for higher/lower bounds?
out: ddm_s1im.m, setting of theta



Adjusting drift and boundary heights

- . Low
High Ky :
Dr?’rr - Dirift 5

f—""

Time ——m=

Lower drift:

slower, less accurate choices

Raise bound:
Slower, more accurate choices

Speed’Accuracy tradeoff Quality of evidence from the stimulus
Only boundary separation changes Only drift rate varies
* aceiracy  [hig
ow
Epeed
spead
? accuracy

Ratcliff & McKoon {2008)



Diffusion models match well observed behavior

Assume that u = k X coherence,
reaction time = diffusion model decision time DM + non-decision time t, 4.
Gives 3 parameters: k, 8, tphq

Minimizing parameter log-likelihood
given mean RTs and choice probabilities (Paimer, Huk & Shadien, 2005)

fit_psych_chron(cohs, choice, rt)

Subject JP
|
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...but there are issues: #1 symmetry

Incorrect choices are frequently slower than correct choices

Uncomment relevant lines slower incorrect
in plot_psych_chron.m than correct choices
Subject MM /
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(but see subj JP)



Vanilla diffusion models predict symmetric RT distributions

Mﬁc_t_ﬂ ekt A decision boundary
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Ratcliff & McKoon (2008)
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Reason: flipping path scales its probability by a constant
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...but there are issues: #2 long-tail predictions

Observed reaction time distributions don’t always have a long tail
Try plot_fitted_rt_dists(cohs, choice, rt)
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Monkeys are even less patient

Roitman & Shadlen (2002) dataset: 2 monkeys performing RDM task

load(‘rs_[monkey_id].mat’) (monkey_1id € {'b’, ‘n’}))
plot_fitted_rt_dists(cohs, choice, rt)
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Heuristic “fix”: the Ratcliff diffusion model

+ diffusion models implement both, and fit mean RTs and choice probabilities

- predict same correct/incorrect RTs
- don’t match reaction time distributions

How to fix: add more parameters!

=400ms = w‘iﬂhlﬁd
E;I;.Elﬁ i E:E-,W':FF '__‘_,—-——::?Hean RT
Pr=98 — Pr=.80 = b
HT=350m= HT=450ms
B Respond A

Respond A as.5s, |:l’ ' /“ Responses
F

Error Hesponses
] Respand B

Error Res ns:u-l;I;I 4B
0 _F__L E9pOmn AT=350ms AT=450ms .
RT=400ms RT=600ms E——V
Mean RT

Pr=.08 —_ Pr=20" ﬁ:li.ig::;_? gan
= IM&

= bilms

a-.55,;

Ratcliff & McKoon (2008)

Variable drift rates: slower errors Variable starting point: faster errors
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Normative approach: how ought we make decisions?

: : handling uncertain information
accumulating evidence : ; e
using Bayesian statistics

Rev. Thomas Bayes
(1701-1781)

v trading of benefits with costs
deciding when to decide J

Richard E. Bellman
(1920-1984)

using Dynamic programming



A model for the momentary evidence

Assume: fixed coherence pug, two motion directions, u € {1y, 11, }.
. ; 1
uniform prior, p(u = —j10) = pp = 11y) =3

At any point n in time: noisy observation x,, of u,

T
p(xalk) = NGl 1) /é\i
“xn s Gam;IanﬂdumaJ I \ "
with mean u and varlance 1" “Ho 0 Mo Xy
—
difficulty

Observe x,, x5, ...; identify if they came from blue or orange distribution

P(ﬁl = Hy |x1:ﬂ} =7 Kalman filter
s
\..
] I3 Zy3 :
O
L
Xy Xz Xz

Why not use Kalman fiter? Explicit derivations provide further insight



Deriving the posterior

plxenlp = po)p(u = 10)
p(x1.5)
oc, p(xenle = 11)p(u = 11y)

=Pl = ko) n”(xnlﬂ = o, 1)
n

1 (xn—p)®
o [

plp = plxyy) =

21
n
NEZ =
l:l: e 2 +uEﬂxﬂ Il !
i1l
Nus R
—_ E++ﬁ‘i-.1 LnXn
accum_evidence_discrete.m
N(—pp)?
P(.U = _Jul:jlxl:N) ,,xﬁ e 7l io Ln Xn logistic sigmoid
Nu3 -
E++P—'d ¥n Xn E
p(p = 1plxyy) = 3 2
N thio Bnn 4 =gty T X "
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Moving to continuous time

Smaller time steps 4t: less reliable evidence dx,, per time step

> -

m p(6xp|p) = N(6xp|udt, &t) »
: /
—Hy Mo dx, M

Find p(u = 11,]x1.y), using N6t = t and ¥, 6x,, = x(t)

x(t)

2
Ko
P = 1plxg.y) X, e 2 ety e O

2
_ E—t+px(t]

1
1 4+ e—2Hox(t)

| x(t)

M

p(,u = 1p|x1n) =

plu

time
accum_evidence_continuous.m

Shows why diffusion models are useful

dx x(t) > 0 implies p(u = 113 |x1.y) >3
— =k +n(t) o 2
at x(t) < 0 implies p(u = 115lx1.n) <3



Normative approach: how ought we make decisions?

handling uncertain information

accumulating evidence : ; e
using Bayesian statistics

Rev. Thomas Bayes
(1701-1781)

Richard E. Bellman
(1920-1984)

o v ) trading of benefits with costs
deciding when to decide ) . .
using Dynamic programming



When to stop accumulating evidence?

Assume: aim is to maximize reward
(reward 1/0 for correct/incorrect choices)

.

more momentary evidence % 1
higher expected reward g .

accumulate forever!

time
accum_evidence_reward.m

Stopping to accumulate is only rational in presence of cost
- Motivational/effort cost
- Cost of attention/computation
- Opportunity cost; less time on future choices
(can be internal & external)



Objective functions

Maximizing expected reward for single choice

Payoff 1 for correct choice, 0 for incorrect choice,
cost ¢ per second accumulation

ER = PC — c(t)

expected reward

time
Maximizing expected reward across multiple choices

Sequence of choices with inter-choice-interval t;

_PC-— c(t)

RR =+t

reward rate

Optimal stopping required closed-loop control  time



Interlude: dynamic programming (DP)

Markov decision process (MDP)

- set of states, s,, 55, ...

- set of actions, a4, a,, ...

- transition probabilities, p(s’'|s, a)
- rewards, r(s,a)

- discount factor, y < 1

r=>0
Aim: find optimal policy, n(s) returning action O”l
for each state to maximize expected
discounted future reward (or return)
Vr(s) = (Z % r(sn.m:sﬂ)}) = r(5,1(5)) + YV Myis'ism
n=0 p(515z,..|m)

\

“value” of state s under policy o



Example: navigation

Specific solution:

V™i(s) =ya+v* "
- choose m; ifa 2;—}'

V¥2(sy) = *

Sg 54 S3 S 54
B 1 aty yaty? yia +y*
m1 X 4 y?

Bellman’s principle of optimality

“optimal policy: whatever initial state/decision, the remaining decisions must
constitute an optimal policy with regard to state resulting from first decision”

Bellman’s equation: V*(s) = maﬂK{T[S. a) + y{V* (sNy(s'1s.a))

f

the maxim'izing action provides the optimal policy



Dynamic programming applied to optimal stopping

- set of states, s,, 55, ... —— accumulated evidence/belief,
g(@) = p(u = polx(t))
- set of actions, a,, a,, ... — accumulate/make choice

- transition probabilities, p(s’|s,a) ——» change of accumulated evidence,
belief transition p(g’|g)

- rewards, r(s,a) — cost for accumulation/rewards
choose ji;:r=g

choose —uy:r=1—g

accumulate another 6t: r = —cét

- discount factor, y < 1 — assumey =1

Bellman’s equation for perceptual decisions

Vig) = ma}{{g, 1-—g, {V@')}pwrlg) - cﬁt]-



The belief transitions function

Examples for p(g'|g)
decreasing 4t

L

dt = 0.010, mul = L

D

0.5 1 - Q5

it = O.HF1, mul = L0

di = 0,100, muwi = 14k a

L

@ 0.5

a 0.% 1 a 0.% 1

decreasing u,

i
o 1= 0010, pud = 20040 o = 0.010, mul = LOG0 o 481 = 0010, mud = 0.200
m 0.5 0.5 - 05 -
1 1 ' 1 '
0 . a 0.5 1 0 0.5 1
q =) =)

plot_g_trans_point_hyp.m



The value function for perceptual decisions

g =1;c=02
— = ! s e
V(g) = ma}:{g, 1—g,{V(g )}p{g’lg) cﬁt]- .
What happens if ¢ or u, changes? é e ﬁ
Tl'_‘,f it out: " 8 | more evidence
: ' 021 4 5
plot_dp_valueintersect_point(u,,c) e
[ 1 e Eg o 1M"!r qoﬂ HE
plot_dp_diffusion_point(u, c):
6. 8
B x(t) =ohlogsfs | wd
o " - :
L "
1-6," -6,
tme time

Diffusion models implement the reward-maximizing strategy



Finding the bound without dynamic programming

We now know: diffusion model with time-invariant bound is optimal

Initial aim: maximize ER = PC — c(t) «
J \ T maximize directly
1 g

T4 e 20at g L)

Complete direct_bound(u,, c) in plot_dp_bound_direct_maximization.m

ER_deriv = &(theta) (mu@ - 2 * ¢ * theta) * sech(theta * mu@)»2 / 2 - .

c * tanh(theta * mu@) / mu@d;
theta = fzero(ER_deriv, 1);

enough evidence
for fast cholces

bound &

too little
gvidence

bound &

cost c drift g



The sequentual probability ratio test (SPRT)

For this simple case, the optimal policy has been known for a while.

Sequential probability ratio test (SPRT) (wald, 1947; Wald & Wolfowitz, 1948; Turing, 1947)

Given two hypotheses H,, H, with known likelihoods p(x|H,), p(x|H5);
sequence xi, Xz, ... generated by which hypothesis?

Among all test with same power (type 1 error),
SPRT requires least samples on average (waid & Wolfowitz, 1948).

SPRT accumulates evidence as long as
¥ - nn p':InIH‘l) <

- nn p(x,|H) — 4

B

Relates to diffusion models and expected reward maximization Bogacz et al., 2006)

Limitation: assumes known likelihood functions (e.g. known coherence)
the same applies to our derivation so far

This rarely holds in real-world decisions!
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Introducing difficulty as a nuisance
Nuisance: not central to the question, but we have to deal with it

e.g., RDM stimulus: motion direction + motion coherence
want to know don't care

latent state of interest,

z = sign(p) € {~1,1} nuisance,
/ determines difficulty,
Stimulus variable: pu=zxy y = |ul pm‘
;
PG4 p(u) = N(H,J; ) hard easy
/%\ i P
easy z=—1 hard z=1 easy - overall difficulty

Momentary evidence: p(8x,|u) = N(xp|udt, 5t)
noisy information about u

Aim: p(z = 1|8xy,8x5,...) = [ p(z = 1,y16x1,6%5, .. )dy = p(1 = 0|8xy, 65, ...)

identify latent state without nuisance




Evidence accumulation with nuisance

Derivation in two steps: posterior over latent state and nusiance, ...

p(u|dxy.n) <, N(Flﬂ- ﬂf) l_[ N(éx, |udt, bt)
—f-‘;(;l!-+r)+#x(t] M
nx# e i
w\,w[\“w

x(t) j |
u N(‘” i+t o+ t)
. * x(t) time
p(i = 0]x(t), t) =J‘ p(u|dxy.y)dy = @ accum_evidence_gauss.m
0

’ﬂ'ﬁz +t -

-

/

Posterior belief now depends on both x(t) and ¢t - —/ “
i

'r.r#-z+t

x(t)

Olx(t), t)

pl =

...then averaging over nuisance

- O]x(t),t)

Pl




Consequences for optimal stopping
Mapping between belief g(t) and particle location x(t) becomes time-dependent

x(t)

’ -2
L + L

- the expected change p(g’'|g, t) also depends on time

g(t) =pu 2 0|x(t),t) = @

required to compute expected return for
accumulating more evidence

- Value function depends on g (or x) and time

V(g,t) = max {g, 1—g,{V(g',t+ Stj}p[g’|g, £~ Eﬂr}

l._'_l L .
deciding accumulating more evidence,
immediataly and deciding later

- decision boundaries depend on time



The belief transition function, unknown evidence reliability

increasing t

-
1= 050, of = 1,00 1= 4,00, «° = 100
“ L D T
K - 0.5 A
1 1 -
o 0.5 L i 0.5 1
: 2
Increasing a;
e
t= 050, 0t = 025 t= 050, of = 100 1= 053, oF = 25,00
o il S
0 0 0
s,
,
m 0.5 A N - 0.5 A
\‘"-.
1 1 1
il L5 1 1] .5 1 il LS 1
a g g

plot_g_trans_gauss_hyp.m



The value function and decision boundaries

V(g,t) = max {g, 1-g,V(g, t+ at}}p{g’lg, £~ cSt}

deciding accurnulating more evidence,
immediately and deciding later

.:-: = 1.0, o= 010

What happens if you change
- overall difficulty, o7,

- accumulation cost, c,
-setc=0,7

:% time-dependent
decision boundaries

plot_dp_valueintersect_gauss(of,c)



Diffusion models with time-dependent boundaries

Consequences:

- SPRT is suboptimal

- No analytical RT/PC solutions
- no direct ER optimization possible

i diffusion % = u+n(t)

time time

Unknown evidence reliability = collapsing boundary diffusion model optimal



Are DDMs with time-invariant bounds suboptimal?

diffusion model bounds bounds in belief space

Ox(t)
% (®)

i

ddm_const_bound_gauss.m

O, (t
0, (0) = o [ 220
ﬁa; 24t
Constant diffusion model bounds implement collapsing bounds in belief
- might be close-to-optimal (under certain circumstances)




Consequence of time-dependent boundaries

constant boundaries

collapsing boundaries
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2
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plot_fpt_vary_bound_example.m
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- time-varying decision boundaries: behavioral evidence



Evidence for bound collapse

Collapsing bound in belief - predicts dropping performance over time

Palmer, Huk & Shadlen (2005) dataset Roitman & Shadlen (2002) dataset

el |

Traaclian St

e 'y s -
A 1 1 1 L 1 1 1 4 1 1 L T
.2 A = 1 il ] 1 ; 0 Q

meachion hme machion ams

plot_pcorrect_over_time.m

In theory: we could reconstruct decision boundaries (in belief) from above plots
In practice: the non-decision time might be stochastic < prevents direct mapping



Are boundaries generally collapsing?

F= | W
T . S e s 0T ™ S (2014 - H AITM (2001) M (2008] Experimeet 1
B s |
15 ' |
A
E 2
.E ':Ihu - .lluf ' T e 1 ! 1 ] W 1 1 3 1 E] I 3 13 W m 3| W m
@ I Fined Boimdaries.  [DUngercy Signal I Comapeing Bouncanss

Figure 6.  Approwimations to posterior model prababilities in faver of the fived bounds medel with between trial vanability parameters and the urgency signal and collapsing bounds madels
without hetween trial variability parameters. Ml details are as destribed for the top row of Figure 5.

(Hawkins et al., 2015)

4
- collapse in particle space, not belief space g 297
= 2
- fitting quantile plots, that might miss tail information | ,
(which are affected by bound collapse) % it
- does it matter? iF :
plcorrect)

How much do we gain from a collapsing boundary?
When do we expect such gains?



Hands on: benefit of collapsing boundaries

Aim: compare expected reward from optimal policy
and that arising from diffusion model with tuned constant boundary

Follow instructions in col lapse_gain.m

Hints: Value function V (g, t) returns expected reward when holding
belief g at time t and behaving optimally thereafter.
> V(g =3t =0) is expected reward for whole decision. See
plot_dp_diffusion_gauss.mfor how to find V(g,t).

For given u, we know probability correct and expected decision
time for diffusion model with constant boundary. To compute
expected reward, we can average these across multiple u that
well-represent p(u) = N(u|0,52). See fixedbound_er(.) in
collapse_gain.m



Hands on: benefit of collapsing boundaries

Finding expected reward for optimal strategy:

gs = dp_discretized_g(dp_ng);

[~, Ve] = dp_getvalues_gauss_hyp(gs, dp_dt, dp_maxt, ..
sigmuZ2s(isigmu2), c);

opter_sigmu2(isigmu2) = Ve(l,ceil(dp_ng 7/ 2));

Completing fixedbound_er(.) to return expected reward for fixed bound:

pcs =1 ./ (1 + exp(-2 * theta * abs(mus)));
dts = theta ./ mus .* tanh(theta * mus);
dts(mus == @) = thetarZ;

er = mean(pcs) - ¢ * mean(dts);

Finding bound height that maximizes expected reward:
[~,er] = fminsearch(..
@(theta) -fixedbound_er(theta, cs(ic), sigmu2, fb_nmu),..
1);
conster_c(ic) = -er;



Hands on: benefit of collapsing boundaries

| — *1 — .'F
e
ILEE b
E: m numerical issues:
g B s constant-bound strategy cannot ;
g o be better than optimal strategy § ou
E ¥ | (DP solution Is approximate) k
B
E— o= |
m (IR
1 B-5
gl T
[ ni ad D 18 ] i 1.2 id 14 iE g 1] ng 0 D ne i i.2 ik 8 iE H
sccumulnlon coud SESY i area
2
increasing ¢ - increasing a; -

For these scenarios, optimal solution barely better than constant boundary
(Recall: still collapsing boundary in belief)

Might change for stronger boundary collapse
e.g., accumulation cost that increases over time (e.g., Drugowitsch et al., 2012)
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Neural signatures of perceptual decisions in macaque

FEEFERRED NULL

Wurtz (2015) Britten et al. (1993)



Memory-guided saccade coding in macaque LIP

sustained activity
In memory-guided
saccades

Wurtz (2015)



Evidence accumulation coding in macaque LIP

Motion
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Time (ms)
Gold & Shadlen (2007);

LIP data from Roitman & Shadlen (2002);
MT data from Britten (1992)



Does area LIP implement a diffusion model?

single bound

=

i LIF physialogy s

8

=]

=

8

&

Response (spikes/s) @ Response (3pikesis)

=




Are LIP traces symmetric around common mean?

Plot 2b — r_out(t):

avgact = mean{nanmean({{m_mrlc(:,dot_ax>=200)+..
m_mr2c(:,dot_ax>=280))/2,2));

mirroredact = m_mric;
mirroredact(: ,dot_ax >= 20@) = .
2*avgact - mirroredact(:,dot_ax >= 200);
plot(dot_ax, nanrunmean{mirroredact’,1),'--","'LineWidth’,2);

particle location

time
T
ok fully
z | symmetric
g%
B
:g'“"
5 35 b
301 -
|
o increasing
Tire () “urgency”
rs_datacode/1lip_rt_roit_fig_7.m signal

ia(t) = b+ xm} 3 o (i (®) + Toue (D)

Toue(E) = b — x(t) 2
(for t > 200ms)

(e — (=3 = - == = Pl



Urgency signal implements collapsing boundary

Uigancy Signal
.-l'll:l| | cofianancs b [ ]
—_— 0%

Jo | — e ] A
e »
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g L R =
El 4] - g0
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""" Tawn
W .53 %o D.55
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Data from Churchland et al. (2008)

effective bound d(1)
+ -

neural activity

urgency signal u(t)

fime

— With urgency
saassass without urgency

Drugowitsch et al. (2012)



Neural evidence accumulation signatures in rodents

Rat click count discrimination task - accumulate click difference
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Hanks et al. (2015)



But: inactivation studies
Rodents:

Bilateral PPC (150 ng)
100 .
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Ehrlich et al. (2015)

LIF sessions
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Katz et al. (2016)




Also: not everything that accumulates, ramps

Rodent VR cue accumulation task

Cue: 1 2 3 4 5 &

100 e 3,840 1

2 ' 3 g
" i - L= =

Cus 1] ] Left, Right 39 = o
Cue & O Cue2 [T 3 9 . E E
cue 5 @] Cug 3 1 = i = o
Cue 4 O : g c = =
Cue 3 E| Tum .'.'l | E L = :S
Cug 2 g Aeward F | & E O =

Cua 1 = o 1 ' o

Teo em &0 cm 01 234568 0 100 200 300 400
{-0.85) Number of ledt cues Maze position (em)

Morcos & Harvey (2016)

This does not invalidate normative approach!

Neural implementation is less clear
(there are multiple ways to implement evidence accumulation)
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Bayesian cue combination
Frequently, evidence from multiple cues needs to be combined

combined

visual

p{w|visual)
p(wlhaptic)
mﬂs. ﬁcmrb ﬂhﬂp bar 'I.':‘idth
i I i
reduce ; : i
visual : A
information i |
- i p(w|haptic)
Emst & Banks -
2002) bar width
Bayesian cue integration: .
P Wisighiz (PEEs] 5, 024 -
“wn E‘ Dm_ﬂ'l{l.‘nﬂﬁg I
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_l:I-!n-I:I.E' }-__-:%‘::M ililEﬂﬁH‘ﬂE uw_..l.._'a'ﬁ.ﬂl-rq::lith:mm ].
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More reliable cue contributes more strongly Combined reliability > individual reliability =3 + p
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The speed/accuracy trade-off in mutlisensory decision-making

Standard cue combination paradigm is fixed-duration
- Ignores temporal evidence accumulation
- Frequently, decision time is under the decision-maker’s control

A cue-combination reaction time task (prugowitsch et al., 2014)

stimulus
screen ahvayﬂ mngmant
(3D random-dot -
optic flow, varying

thI'EI'IﬂE}
platfurrn

vestlbular mrnl:rlned
condition
choose ‘left’ choose “right’ unreliable
h<0:h=0 reliable
e — / /-_ V'H'Dﬂi'[y
heading = acceleration
h 25

1= time

heading discrimination task varying reliability time-course



Visual stimulus example




Visual reliability modulated by coherence




Evidence reliability modulated by four factors

choose Jeft’  choose right'

h=0 i._'_‘_-"' (1]
heading direction (angle away from straight-ahead) %hﬂ'ﬂ;ﬁm
visual flow field coherence

unreliable
reliable
/ /- velocity

= acceleration
. . . 23
velocity/acceleration time-course 1s Hme

presence of multiple modalities




The vis/vest cue combination dataset

See content of vis_vest folder:
vis_vest_[x].mat: per-trial data for single subject [ x]
vis_vest_README.txt: details of data format

A trial was characterized by
oris: heading direction (+ve: right; -ve: left)
mod: modalities present (vis/vest/comb)
cohs: visual coherence, € {0.25,0.37,0.70}
The subject’s response consisted of
choice: 0 - "left”; 1 - “right”
rt: reaction time in [s], stimulus onset to choice

Further documents:

vis_vest_tutorial.pdf: detailed instructions, derivations,
some solutions (if you get stuck)

Drugowitsch20@14.pdf: paper that used this dataset



What you should do
Look at vis_vest_tutorial.pdf

- Become familiar with the data and behavior

- Perform standard Bayesian cue combination analysis

- Derive Bayes-optimal evidence accumulation & simulate

- Single cue, evidence reliability that changes over time
- Multiple cues, constant evidence reliability

- Bonus: combination of both

- Simulate behavior in a virtual experiment & try to match human data
- Bonus: refine simulations

- Bonus: derive optimal decision boundaries



Good luck!



Behavior

[t B T

increasing coherence

vestibular
visiial
combinead

[t B T

plot_psych_chron(.)

drop in reaction times
Increase in comect cholces



Standard cue combination test

Estimating thresholds o2 by fitting cumulative Gaussians

i i
hadirg Sheciion Hegl

test_fit_cumul_gauss(.)

Complete test_standard_cue_comb(.) = = .
-
’ e
B o T

Famasciing S gl

But, is faster than

PR ST



Deriving optimal evidence accumulation

Momentary evidence likelihood (visual modality)

p(6x,|z(h), c) = N(6x,|z(h)v,k(c)ébt, &t)

information in heading direction, z(h) = sin(h) global reliability
(depands on coherance)
informative

| componant 24 time-dependent reliability

(velocity, v, = v(nét))

Find posterior z(h) given some momentary evidence 6x4, ..., 0x,

p{z(h)|5x1,...,5xn)ccﬂp(ﬁxﬂz(h),r:) with Iﬂ(r)=zngxj V(t) =
j=1 j=1

Find posterior belief of right-ward motion,

p(z(h) = 0]x, (), ) f p(z(h)|x,(t), t)dz(h) (use ;" Nxla, b)dx = @ (F5)
0

L,
T M:s
et

Vi



Simulate weighted evidence accumulation

g o = o
= =1

down-weighting
evidence, as

/ uninformative

sim_weighted_diffusion.m



Simulating behavior

sim_behavior.m
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