CoSMo 2012 Robotics Tutorial : Robot Control
Date: August 16", 2012 Instructor: Brenna Argall

Design an “open-ended” trapezoidal controller to estimate the position changes of a wheeled mobile robot, with
the following inputs, outputs and constant parameter values.

Input:[v,w,t] Output:[dx,dy,d0]

v=1m g=1md gL
S S 15

Test your controller with the following sequence of commands, starting each time from zero translational and
rotational speeds. Plot your output.

[v=0.5, w=0, t=1]
-1

[v=0, o=—, t=1]
27

[v=0.5, w=0, t=1]

[v=0, wZL, t=1]
27

[v=0.5, w=0, t=1]

Repeat the test sequence, now using the ending speed of the previous command as the starting speed of the next
command. Plot your output.

-0,142986, -0.0708421

Test another sequence of commands:

[v=0.5, »=0.1, t=5]

[v=0.5, o=—0.1, t=5]

[v=0.3, wzii,r:3ﬂ
21

[v=—0.5, =0, t=3]

-3

0 1 2 3 4 5 6 7

2,33407, -0.556188

Now add some actuation noise to your controller. Play around with different noise amounts, and repeat the first
command sequence above, multiple times. Record the (x,y) positions (for use in the robot learning section).

Now try your controller with a real robot dataset. The file odometry_0.dat contains data of the form: [t Vv ©]
(Note that the time is absolute, not relative.) This is essentially a “dead-reckoning” model. Compare this to the
ground truth data, recorded from a Vicon system, located in the file ground_truth_O.dat: [t x y 6] , by
plotting both results. How do they compare — how accurate is this dead reckoning model for this robot platform?
What might be some causes for these discrepancies?

Also test the more challenging dataset (odometry_1.dat, ground_truth_I.dat). How does your dead reckoning
model compare on the two datasets? What might be a reason for the difference in performance?

b

LS Pk

.]
0.5 1 1.5 2 2.5 a2 3.5 4 —4 #2 a 2 4 6

0.101798, 2.00914 -0.432238, -4.02457

CoSMo 2012 Robotics Tutorial : Robot Learning
Date: August 16", 2012 Instructor: Brenna Argall

Locally Weighted Linear Regression (LWR) is a straightforward “lazy” learning approach, that keeps around all
of the training data. Minimizing the least squared error is be found by solving the following equation:

y=x,2'2)"Z"v

X, query point (within the input space)
W : diagonal matrix, where w, =+ K (d,)
K ():kernel function K (d)=e ™/ x e X
Z=WX
v=Wy

Implement a LWR algorithm, and test it on your (X,y) data recorded above (to learn the mapping X—VY).
Divide your data into a training set and a testing set (e.g. 50% in each), and make sure to randomize your training
data. Test your algorithm on the testing set, and plot the results. Also plot your training set; the test set
predictions should roughly follow the form of the points in the training set. Hint: Threshold your kernel function,
so that only training data points with high kernel activations are included within the equations above.

In the robot datasets of the previous section, errors in orientation are present. The dataset Irn_0.dat has computed
errors in heading from a comparison to the ground truth dataset, and is of the form [® ¢;] . Use your LWR
algorithm to learn a mapping from ®—¢€; , and use this to correct the predictions of your controller. Plot the
results, using the odometry_1.dat dataset. Hint: It can help to normalize your inputs and outputs to within [0,1].

A lot of work goes into building a “good” learning dataset. The dataset Irn_1.dat is of the form [d0 e]
which at first glance we would expect to represent a similar relationship to that captured in the Irn_0 dataset. Use
your LWR algorithm to learn a mapping from d0—e, | and use this to correct the predictions of your
controller. Plot the results. How do they compare to those of dataset Irn_0?

