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Although our understanding of the mechanisms underlying motor adaptation has greatly benefited from previous computational mod-
els, the architecture of motor memory is still uncertain. On one hand, two-state models that contain both a fast-learning–fast-forgetting
process and a slow-learning–slow-forgetting process explain a wide range of data on motor adaptation, but cannot differentiate whether
the fast and slow processes are arranged serially or in parallel and cannot account for learning multiple tasks simultaneously. On the other
hand, multiple parallel-state models learn multiple tasks simultaneously but cannot account for a number of motor adaptation data.
Here, we investigated the architecture of human motor memory by systematically testing possible architectures via a combination of
simulations and a dual visuomotor adaptation experimental paradigm. We found that only one parsimonious model can account for both
previous motor adaptation data and our dual-task adaptation data: a fast process that contains a single state is arranged in parallel with
a slow process that contains multiple states switched via contextual cues. Our result suggests that during motor adaptation, fast and slow
processes are updated simultaneously from the same motor learning errors.

Introduction
Recent studies support the hypothesis that motor adaptation to
external perturbations such as force-field, saccadic gain shift, and
visuomotor transformation occurs at multiple timescales
(Kojima et al., 2004; Hatada et al., 2006; Smith et al., 2006). To
account for this multi-timescale adaptation, Smith et al. (2006)
proposed a two-state model, in which a fast process contributes
to fast initial learning, but forgets quickly, and a slow process
contributes to long-term retention, but learns slowly. This model
successfully accounts for a number of adaptation phenomena,
including savings, wherein the second adaptation to a task is
faster than the first (Kojima et al., 2004); anterograde interfer-
ence, wherein learning a second task interferes with the recall of
the first task (Miall et al., 2004); and spontaneous recovery,
wherein if an adaptation period is followed by a brief reverse-
adaptation period, a subsequent period in which errors are
clamped to zero causes a rebound toward the initial adaptation
(Smith et al., 2006).

How these proposed fast and slow processes are organized,
however, is ambiguous. Because the two-state model is linear, it
can account for the above data with either a serial organization, in
which the fast process updates its state from motor errors and
sends its output to the slow process, or a parallel organization, in

which both the fast and slow processes simultaneously update
their states from errors (Smith et al., 2006). Furthermore, such
two-state models cannot explain dual- or multiple-task adapta-
tion, because sufficient adaptation to a new task overrides adap-
tation of a previous task in such models. When given contextual
cues and sufficient trials, humans can simultaneously adapt to
two opposite force fields (Osu et al., 2004; Nozaki et al., 2006;
Howard et al., 2008), two saccadic gains (Shelhamer et al., 2005),
or several visuomotor rotations (Imamizu et al., 2007; Choi et al.,
2008). The MOdular Selection and Identification for Control
(MOSAIC) model (Wolpert and Kawato, 1998) naturally ac-
counts for dual or multiple adaptation via nonlinear switching
among multiple parallel internal models. However, because
MOSAIC uses only a single timescale for learning and no forget-
ting (that is, it does not contain distinct fast and slow processes),
it cannot explain large increases of errors at the beginning of each
block in a dual-adaptation experiment with alternating blocks
(Imamizu et al., 2007) or phenomena such as spontaneous
recovery.

Here, we systematically addressed the following two ques-
tions: Are the proposed fast and slow processes arranged serially
or in parallel? Is there one state or more than one for each pro-
posed fast and slow process? Systematic simulations of motor
adaptation of candidate models in different adaptation experi-
mental paradigms show that only two models, one parallel and
one serial, both with a fast process with one state and with a slow
process with multiple states that are switched nonlinearly by a
contextual cue, can account for all simulated data. To further
differentiate between these two models, we then designed a
visuomotor rotation experiment and compared dual adaptation
in healthy human subjects to dual adaptation predicted by the
serial and the parallel models.

Received March 11, 2009; revised June 4, 2009; accepted July 10, 2009.
This work was supported in part by National Science Foundation Grant IIS 0535282 and National Institutes of

Health Grant R03 HD050591-02. We thank James Gordon, Carolee Winstein, Cheol Han, Yukikazu Hidaka, Young-
geun Choi, Etienne Burdet, Stefan Schaal, Charalambos Papaxanthis, and Robert Gregor for helpful discussions and
comments on a previous version of this manuscript.

Correspondence should be addressed to Nicolas Schweighofer, Department of Biokinesiology and Physical
Therapy, University of Southern California, CHP 155, 1540 Alcazar Street, Los Angeles, CA 90089. E-mail:
schweigh@usc.edu.

DOI:10.1523/JNEUROSCI.1294-09.2009
Copyright © 2009 Society for Neuroscience 0270-6474/09/2910396-09$15.00/0

10396 • The Journal of Neuroscience, August 19, 2009 • 29(33):10396 –10404



Materials and Methods
Twelve right-handed healthy subjects (seven men, five women, 23–33
years of age) signed an informed consent to participate in the study,
which was approved by the local Institutional Review Board. Subjects sat
in front of a liquid crystal display monitor and held a joystick. At each
trial, subjects moved a cursor to a target by using the joystick. At the
beginning of a trial, a cursor appeared at the center position. Two seconds
later, a target appeared at one of four positions of the screen (top, right,
left, and bottom) 15 cm from the center, and the cursor disappeared.
Subjects had 2 s to move the cursor to the target without visual feedback
of the cursor trajectory. To provide feedback of performance, the cur-
sor then appeared again for 1 s at a position 15 cm from the center
along the direction of the final cursor position. Intertrial intervals
were varied randomly from 2 to 14 s. At each trial, we measured the
directional error between the target direction and the final cursor
direction from the initial cursor position. When subjects did not
move within 2 s in a trial, the trial was regarded as a missed trial, and
the next trial started.

In the training session, we altered the mapping between the joystick
and cursor directions using four different visuomotor rotations
(Krakauer et al., 1999, 2005; Wigmore et al., 2002; Miall et al., 2004;
Hinder et al., 2007; Seidler and Noll, 2008): 25° (task A), �25° (task B),
�50° (task C), and 50° (task D). For subjects to distinguish between the
different tasks, we used target positions as a contextual cue: targets for
each of four visuomotor rotation tasks appeared at one of four different
positions (top, right, left, and bottom). The cue positions were counter-
balanced across subjects. In the first 100 trials of the training session,
subjects practiced tasks A and B in a massed schedule, which consisted of
three consecutive blocks of 50 trials of task A, 25 trials of task B, and 25
trials of task A. In the second 100 trials of the training session, subjects
practiced tasks C and D in a pseudorandom schedule: in every two-trial
block, one of two tasks was chosen randomly and presented followed by
the other task.

In our experiment, we used the A–B–A paradigm as a massed schedule
in the first half of the training session for two reasons. First, such a
paradigm has been widely used in previous motor adaptation studies
(Brashers-Krug et al., 1996; Miall et al., 2004; Krakauer et al., 2005).

Second, it is the simplest schedule that allowed us to estimate model
parameters reliably with small confidence intervals (see Fig. 6).

Before the training session, subjects performed 200 trials of a baseline
session, in which there was no rotation and targets appeared at the four
positions in a pseudorandom order.

Candidate models. We searched for the most parsimonious model that
can simultaneously account for all the following motor adaptation data:
savings, spontaneous recovery, anterograde interference, and dual adap-
tation in both blocked and random schedules. We modeled motor adap-
tation via the summation of the multiple internal states, each modeled
with a linear differential equation (see below) with a learning term and a
forgetting term (Smith et al., 2006). We studied all possible models with
either a serial or a parallel organization of the fast and slow processes, in
which each process contains either a single state or multiple states. Fur-
thermore, although previous experiments and modeling studies are con-
sistent with the idea that motor adaptation occurs at multiple timescales
rather than at a single timescale (Kojima et al., 2004; Hatada et al., 2006;
Smith et al., 2006; Kording et al., 2007; Criscimagna-Hemminger and
Shadmehr, 2008; Ethier et al., 2008), we also studied models with a single
process with either a single state or multiple parallel states for the com-
pleteness of comparisons.

Such systematic search led to 10 different possible models (Fig. 1): (1)
a 1-state model, (2) a serial 1-fast–1-slow (1-fast 1-slow) model, (3) a
parallel 1-fast 1-slow model, (4) a parallel n-state model, (5) a serial n-fast
n-slow model, (6) a parallel n-fast n-slow model, (7) a serial 1-fast n-slow
model, (8) a parallel 1-fast n-slow model, (9) a serial n-fast 1-slow model,
and (10) a parallel n-fast 1-slow model.

The 1-state model and the parallel and serial 1-fast 1-slow models are
identical to those proposed and studied by Smith et al. (2006). For all
other models, we added multiple inner states in either the fast or the slow
process or both. The differential equations for all states within a process
have the same parameters, but the states receive different contextual cue
inputs. As in MOSAIC, the contextual cue input has two roles: it selects
the appropriate state(s) to be summed in the total output, and it
allows the updating of this selected state(s) from motor errors. For-
getting is not gated by the contextual input (see model equations
below). For the sake of simplicity, we make the following assump-

Figure 1. Ten possible motor adaptation models that address the following three questions: (1) Are there slow and fast timescales? (2) Is there one state or more than one for each timescale?
(3) Are the fast and slow processes arranged serially or in parallel?
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tions: (1) no interference between multiple states, (2) perfect switch-
ing between multiple states, and (3) identical learning and forgetting
rate parameters for all states within a process. Thus, except for the
1-state model and the parallel n-state model, which contain only two
parameters (one forgetting rate A and one learning rate B), all models
contain four parameters: one forgetting rate and one learning rate for
each fast and slow process (Af, Bf, As, and Bs) (model parameters are
given below).

For all models, at each trial n, the motor error input e is determined by
the difference between an external perturbation f and the motor output y
as follows:

e�n� � f�n� � y�n�. (1)

For the 1-state model, the state update equation is simply given by the
following:

y�n� � x�n� (2)

and

x�n � 1� � A � x�n� � B � e�n�, (3)

where x is a learning process with a single state, A is a forgetting rate, and
B is a learning rate.

In the 1-fast 1-slow models, the fast and slow processes have a single
inner state each. The state update rules for the parallel representation of
the 1-fast 1-slow models are thus given by the following (Smith et al.,
2006):

y�n� � xf(n) � xs(n) (4)

and

xf(n � 1) � Af � xf(n) � Bf � e�n�
(5)

xs(n � 1) � As � xs(n) � Bs � e�n�,

where xf and xs are a fast and a slow learning process with a single state,
respectively.

In the parallel n-state model, there is only one process, which has
multiple inner states, as follows:

y�n� � x(n)T c(n) (6)

and

x(n � 1) � A � x(n) � B � e�n� � c(n), (7)

where x is a learning process with Ntask internal states and c is the con-
textual cue. These two variables are vectors of length Ntask, equal to the
number of tasks in the experiment. Because we assumed no interference
and perfect switching among internal states in a process, we used a unit
vector for c. For example, for the first task, we used c � (1,0,. . . ,0)T, for
the second task, c � (0,1,. . . ,0)T, and so on.

In the n-fast n-slow models, both the fast and slow processes have
multiple inner states (and thus both receive a contextual cue input). The
state update rules for the parallel representation of the n-fast n-slow
models are thus given by the following:

y(n) � xf(n)T c(n)�xs(n)Tc(n) (8)

and

xf(n � 1) � Af � xf(n) � Bf � e�n� � c(n)
(9)

xs(n � 1) � As � xs(n) � Bs � e�n� � c(n),

where xf and xs are fast and slow processes with Ntask internal states.
The parallel 1-fast n-slow model (Fig. 2 A) has a fast and a slow process

organized in parallel, with a single state in the fast process and multiple
states in the slow process. The state update rules for the parallel repre-
sentation for this model are given by the following:

y(n) � xf(n)�xs(n)Tc(n) (10)

and

xf(n � 1) � Af � xf(n) � Bf � e�n�
(11)

xs(n � 1) � As � xs(n) � Bs � e�n� � c(n).

Similarly, in the parallel n-fast 1-slow models, only the fast process has
multiple inner states. The state update rules for the parallel representa-
tion of the n-fast 1-slow models are as follows:

y(n) � xf(n)T c(n)�xs(n) (12)

and

xf(n � 1) � Af � xf(n) � Bf � e�n� � c(n)
(13)

xs(n � 1) � As � xs(n) � Bs � e�n�.

All serial models are identical to their parallel counterparts except that
the slow process does not receives the motor error input e directly but
receives the output of the fast process xf. For example, the state update
rule of the slow process for the serial representation of the 1-fast n-slow
model is as follows (compare with Eq. 11):

xs(n � 1) � As � xs(n) � Bs � xf(n � 1) � c(n). (14)

Finally, it should be noted that we attempted to model the common
neuronal mechanism of motor adaptation as in the work of Smith et al.
(2006) or Kording et al. (2007) but not the mechanism of specific type of
motor adaptation. Therefore, our model does not account for the effect
of physiological factors, such as muscle mechanics, limb dynamics, etc.

Simulation parameters. Here, we chose parameters for all models to
reproduce previous experimental results qualitatively. Note, however,
that the simulation results are not limited by these particular parameter
values. These qualitative results are valid across wide ranges of parame-
ters (for details, see supplemental material, available at www.jneurosci.
org). The parameters of the serial models were determined such that
these models behave identically to the corresponding parallel models
in massed schedules (see supplemental material, available at www.
jneurosci.org).

In the simulations of spontaneous recovery (Fig. 3) and anterograde
interference (Fig. 4), we used the parameters given by Smith et al. (2006):
Af � 0.92, As � 0.996, Bf � 0.03, and Bs � 0.004 for the parallel 1-fast
1-slow, n-fast 1-slow, n-fast n-slow, and 1-fast n-slow models. For the
serial 1-fast 1-slow, n-fast 1-slow, n-fast n-slow, 1-fast n-slow models, we
used the following parameters: Af � 0.92, As � 0.996, Bf � 0.0337, and
Bs � 0.0091. For the 1-process model and parallel n model, we used A �
0.996 and B � 0.004.

In the simulations of intermittent and random dual-adaptation para-
digms (Fig. 5), we chose parameters for all models to qualitatively
reproduce saccadic adaptation results of Shelhamer et al. (2005). We

Figure 2. The two possible architectures of the 1-fast n-slow model: parallel (A) and serial
(B). e is a motor error, c is a contextual cue, and x is a motor output. Multiple boxes in the slow
process represent internal states switched by the contextual cue input.
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used the following parameters: Af � 0.6, As � 0.998, Bf � 0.1, and Bs �
0.025 for the parallel 1-fast 1-slow, n-fast 1-slow, n-fast n-slow, and 1-fast
n-slow models, and Af � 0.6, As � 0.998, Bf � 0.115, and Bs � 0.087 for the
serial 1-fast 1-slow, n-fast 1-slow, n-fast n-slow, and 1-fast n-slow models.

In the simulations of the washout paradigm (see Fig. 7), we chose the
following parameters for all models to qualitatively reproduce results of
Zarahn et al. (2008). (1) For the two-state model, we chose Af � 0.519, As �
0.983, Bf � 0.193, and Bs � 0.159. (2) For the varying-parameter model,
as in Zarahn et al. (2008), we chose for the initial learning phase Af �
0.492, As � 0.986, Bf � 0.077, and Bs � 0.116, for the washout phase Af �
0.480, As � 0.975, Bf � 0.230, and Bs � 0.330, and for the relearning
phase Af � 0.548, As � 0.975, Bf � 0.088, and Bs � 0.330. (3) For the
parallel 1-fast n-slow model, we chose Af � 0.953, As � 1, Bf � 0.141, and
Bs � 0.032.

In the simulations of experimental paradigms in which contextual
cues were given explicitly, such as in paradigms of anterograde interfer-
ence (Miall et al., 2004) or dual and multiple adaptation (Osu et al., 2004;
Shelhamer et al., 2005; Choi et al., 2008), we assumed that contextual
switching occurred at the time of task switching. The models thus use a
switched contextual input c from the first trial of the new task. For
example, if task A had been presented from the 1st to the 100th trial and
was changed to task B on the 101st trial, then c(1) � … c(100) � cA and
c(101) � cB.

In the simulations of experimental paradigms in which contextual
cues were not given explicitly, such as in paradigms of spontaneous re-
covery (Smith et al., 2006) or washout (Zarahn et al., 2008), we assumed
that the errors after the first trial of the new task served as the switching
trials and that contextual switching occurred after those trials. The mod-
els thus use a switched contextual input c from the second trial of the new
task. From the above example, c(1) � … c(100) � c(101) � cA and
c(102) � cB.

Model parameter fitting. We estimated the parameters of the parallel
and serial 1-fast n-slow model using data in the massed schedule (i.e., the
first 100 trials of the training session), so that both models predicted the
data in the massed schedule equally well. To find confidence intervals of
model parameter estimates, we used the bootstrap t method because it is

more accurate than standard parametric
confidence intervals, especially for samples
with unknown distributions and small sam-
ple numbers (DiCiccio and Efron, 1996).
First, we calculated an observed data mean x̂
by averaging the data of the 12 subjects at
each trial. We also generated 10,000 boot-
strap estimates of data mean x̂* [our nota-
tions are those used in the work of DiCiccio
and Efron (1996): �̂ is an estimate for a pa-
rameter of interest �, �* is the bootstrapped
data of �, and �̂* is the estimate of boot-
strapped data �*]. For this purpose, we resa-
mpled the 12 subjects’ data 10,000 times with
replacement and took averages of the resa-
mpled data sets. We then fitted the models
both to the observed data mean and to each
of the data mean estimates in the massed sched-
ule. For the actual data and each of the 10,000
bootstrap sets, we used the MATLAB fmincon
function to find the model parameters that max-
imized the log likelihood as follows:

log P(x � Af, As, Bf, Bs)�

�
N

2
log(2��2)��

i�1

N �x�i� � y�i��2

2�2 , (15)

where x � {x(1),x(2),. . . ,x( N)}, x(i) is an
average performance on the ith trial across
subjects either in original data or in each boot-
strapped data set, y(i) is a model prediction on
the ith trial, N is the number of trial, and � 2 is
the variance of the model output which repre-

sents the effects of output and state noises. As the estimate of �2, we used the
average sample variance of the data, 1/N¥i�1

N �2(i), where �2(i) is the sample
variance of the data on the ith trial across subjects either in original data or in
each bootstrapped data set.

We then computed the 95% confidence intervals of parameters � � {Af,
Bf, As, Bs} of each model. For both parallel and serial models, the differences
between parameter estimates �̂ found for the observed data mean x̂ and
parameter estimates �̂* found for 10,000 data mean estimates x̂* were used to
estimate the distribution of the bootstrap t statistics T� using T�* as follows:

T
�
* �

�̂* � �̂

�̂
�
*

, (16)

where �̂�* is the SD of each bootstrap parameter estimate �̂*. Here, we
used the bootstrap SEs s� of the parameters to approximate �̂�*. The
values of parameters related to the 2.5 and 97.5 percentile values of T*, �̂ �
s�T�*

(0.025), and �̂ � s�T�*
(0.975) were used as the 95% confidence intervals,

where T�*
(�) is the percentile of the estimated t distribution.

Model comparison. Our goal was to test which model, i.e., the parallel
or the serial model, better predicted the data. Using the estimated model
parameters in the massed schedule, we predicted data in the random
schedule (i.e., the second set of 100 trials of the training session). We then
compared the mean square errors (MSEs) between the data and model
predictions. These MSEs can be seen as cross-validation errors because
we used a part of the data to estimate model parameters and the other
part to compare the predictabilities of models.

To compare the MSEs of the parallel and serial models, we used the
bootstrap t test (DiCiccio and Efron, 1996). First, we estimated the
distribution of bootstrap t statistics Td,MSE using the differences be-
tween MSEs of the parallel and serial model predictions d̂MSE �
MSEp � MSEs and d̂*MSE � MSEp* � MSEs* as follows:

T*d,MSE �
d̂*MSE � d̂MSE

sd,MSE
, (17)

where sd,MSE is the bootstrap SE of d*MSE.

Figure 3. Simulation of spontaneous recovery for all 10 models considered: 1-state model, parallel n-state model, serial and
parallel 1-fast 1-slow models, serial and parallel n-fast 1-slow models, serial and parallel n-fast n-slow models, and serial and
parallel 1-fast n-slow models. A, Schedule of the error-clamping paradigm used to induce spontaneous recovery, which consists of
180 trials for adaptation to one stimulus (1), 20 trials for adaptation to the opposite stimulus (�1, deadaptation), and 50
error-clamping trials, during which errors are clamped to zero. B, Model predictions of adaptation performance for all models. The
parallel and serial models are superimposed in all panels except for the 1-state and parallel n-state models. Check marks or crosses
are used to show which models account or do not account for the data, respectively. All models except the 1-state and parallel
n-state model can reproduce the characteristic of spontaneous recovery: the output for the first error-clamping trial starts near the
baseline (zero), increases trial by trial, and decays slowly.
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We then tested the null hypothesis that dMSE �
0, i.e., that in matched pairs, MSEs of the serial
model are equal to or less than the parallel
model, by calculating a bootstrap one-tailed p
value with a significance level � � 0.05, with p
given as follows:

p � P�Td,MSE � tc,MSE�

�
�#�T*d,MSE � � d̂MSE/sd,MSE])

B
, (18)

where tc,MSE is a test statistic corresponding to
the hypothesis of no difference between two
means of MSEs, #[.] is the number of cases
where the inner statement ([.]) is true, and B is
the number of bootstrap resamplings, i.e.,
10,000.

Results
Simulation of spontaneous recovery
supports fast and slow timescales
Spontaneous recovery is observed when
a period of adaptation is followed by a
brief period of deadaptation and a subse-
quent period in which errors are clamped
to zero: in the clamped period, the perfor-
mance is initially near the baseline (zero),
but quickly recovers in the next several
trials, before decaying slowly back to zero
again. All models can reproduce such
data, except the 1-state model and the parallel n-state model (Fig.
3B). These models predict a monotonous decrease of the adapta-
tion performance during the error-clamping trials rather than
spontaneous recovery. These results thus confirm and extend previ-
ous studies (Smith et al., 2006; Criscimagna-Hemminger and Shad-
mehr, 2008; Ethier et al., 2008) showing that both fast and slow
processes are necessary to account for spontaneous recovery.

Simulation of anterograde
interferences supports a context-independent process
Next, we performed simulations of experiments that induce
anterograde interference with the eight remaining model candi-
dates (Fig. 4 A). Anterograde interference is observed when a
period of adaptation is followed by a period of deadaptation and a
subsequent period of readaptation. At the onset of the readapta-
tion period, recall of the initial adaptation is interfered by the
previous deadaptation: the initial errors in deadaptation and re-
adaptation are greater than the initial error of the first adaptation
(Miall et al., 2004). All models except the parallel and the serial
n-fast n-slow models can reproduce this data (Fig. 4B,C). Thus,
at least one process with a single state is necessary to account for
anterograde interference. The parallel and the serial n-fast n-slow
models, which contain two processes with context-dependent
switching between states, predict no interference between first and
second adaptations. As a result, in the parallel and the serial n-fast
n-slow models, the initial errors of deadaptation are equal to the
initial errors of the first adaptation, and the initial errors of the
readaptation are smaller than the initial errors of the first adap-
tation (Fig. 4B).

Simulation of dual adaptations supports a context-dependent
slow process
To further distinguish among the six remaining candidate
models that can reproduce both spontaneous recovery and

anterograde interference (the two 1-fast 1-slow models, the
two 1-fast n-slow models, and the two n-fast 1-slow models),
we simulated dual adaptation with two types of schedules (see
Materials and Methods for details): intermittent block sched-
ules, in which two opposite adaptation tasks were presented in
alternating blocks (Fig. 5A), and pseudorandom schedules, in
which one of two opposite adaptation tasks was presented
pseudorandomly each trial (Fig. 5B). Previous adaptation
studies have shown gradual improvement in performance
both across blocks of trials in the intermittent schedule (Shel-
hamer et al., 2005) and across trials in the random schedule
(Osu et al., 2004; Choi et al., 2008). Of the six remaining
candidate models, only the parallel and the serial 1-fast n-slow
models can reproduce such data. In the intermittent schedule,
the two 1-fast 1-slow models [i.e., the two two-state models in
the work of Smith et al. (2006)], and the two n-fast 1-slow
models predict that, at the beginning of the alternating blocks,
the performance for each task did not gradually improve
across blocks but instead was reset to zero after adaptation to
the other task. Similarly, in the random schedule, the two
1-fast 1-slow models and the two n-fast 1-slow models show
no improvement across trials.

It is important to note that although both the parallel and
the serial 1-fast n-slow models can reproduce dual-adaptation
data qualitatively, the parallel models predict a higher rate of
adaptation in the random schedule than do the serial models
(Fig. 5B). In the following, we made use of these different rates
of adaptation in an experiment designed to differentiate be-
tween these two remaining candidate models.

Dual-adaptation experiment supports the parallel 1-fast
n-slow model
The simulations described above show that among the 10 models
simulated, only 2 models, the parallel and serial 1-fast n-slow
models (Fig. 2A,B), can account for spontaneous recovery, an-

Figure 4. Simulation of anterograde interference for the eight remaining candidate models: serial and parallel n-fast n-slow
models, serial and parallel 1-fast 1-slow models, serial and parallel n-fast 1-slow models, and serial and parallel 1-fast n-slow
models. The parallel and serial models are superimposed in all panels. A, Schedule of the A–B–A paradigm used to induce
anterograde interference, which consists of 100 trials for adaptation to one stimulus (1), 100 trials for adaptation to the opposite
stimulus (�1, deadaptation), and 100 trials for readaptation to 1. B, Model predictions of adaptation performance in the A–B–A
paradigm. C, Comparisons of initial errors in each session. As in Figure 3, check marks or crosses are used to show which models
account or do not account for the data, respectively. All models except the serial and parallel n-fast n-slow models can reproduce
the characteristic of anterograde interference: the initial errors of both deadaptation and readaptation are greater than the initial
error of the first adaptation.
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terograde interference, and dual adaptation in intermittent and
random schedules. To further differentiate between these two
remaining models, we developed a new hybrid experimental
schedule, in which a massed schedule is followed by a random
schedule. Because the parallel and serial 1-fast n-slow models
account equally well for learning data in massed schedules (Smith
et al., 2006) but adapt at different rates in random schedules (Fig.
5B), we estimated the parameters of the two models in the initial

massed schedule and then compared the
model predictions to actual data in the
following random schedule.

We estimated the parameters of the
parallel and serial models by fitting the
models to the average data of 12 subjects
in the massed schedule and obtained 95%
confidence intervals of the parameters us-
ing the bootstrap t method (DiCiccio and
Efron, 1996) (see Materials and Methods
for details). Figure 6 shows the average
data of 12 subjects and model predictions
of both the parallel and the serial models
in the hybrid schedule. As expected, dur-
ing the massed schedule, the models be-
have almost identically and give a good fit
to the data. In the random schedule, how-
ever, the model predictions of perfor-
mance differ: the serial model predicts
slower learning for the two tasks, whereas
in contrast, the parallel model predicts
faster learning. As we can see in Figure 6,
such faster learning by the parallel model
appears to better match actual data from
our subjects.

To verify that the parallel 1-fast n-slow
model predicted the data in the random
schedule better than the serial 1-fast
n-slow model, we compared the MSEs in
the random schedule between the data
and the predictions of the parallel and the
serial models, respectively. The parallel
model shows significantly smaller MSEs
[MSE (95% confidence intervals) � 89.05
(38.1�226.6)] than the serial model
[MSEs 1007.43 (196.9�2012.9)] (boot-
strap t test; p � 0.0001; see Materials and
Methods for details). Given this result, we
henceforth consider only the parallel
1-slow n-fast model and not the serial
1-slow n-fast model.

Comparison with time-varying-
parameter model in savings in
relearning experiment

The two-state models cannot explain
savings during relearning in the wash-
out paradigm, in which a large number
of washout trials (i.e., trials with zero per-
turbation) are inserted between the initial
learning phase and the relearning phase
(Zarahn et al., 2008). A recent time-
varying-parameter two-state model with
different decaying and learning rates dur-
ing the different perturbation conditions

accounts for the changes in relearning speed (Zarahn et al., 2008).
To test whether the parallel 1-fast n-slow model can reproduce

such data, we performed the simulation of the washout paradigm
and compared the predictions of the following three models: (1)
the two-state (parallel) model, (2) the varying-parameter (paral-
lel) model with two states, and (3) the parallel 1-fast 1-slow
model. The two-state model cannot reproduce savings (Zarahn et

Figure 5. Simulations of two dual-adaptation experiments for the remaining six models considered: serial and parallel 1-fast
1-slow models, serial and parallel n-fast 1-slow models, and serial and parallel 1-fast n-slow models. The parallel and serial models
are superimposed in all panels. A, B, Intermittent alternation of two tasks (A) and random alternation between two tasks (B). For
each model, the same parameters are used in A and B. Only the serial and parallel 1-fast n-slow models can reproduce dual
adaptations in both intermitted and random conditions. Note that the parallel and serial 1-fast n-slow models behave identically
in A but differently in B: the parallel 1-fast n-slow model shows faster adaptation rates than the serial 1-fast n-slow model in
random dual adaptation.

Figure 6. Average performance data across subjects during learning (black dots) and predictions of serial (red stars) and parallel
(blue crosses) 1-fast n-slow models. Red- and blue-shaded areas show the ranges of �SEs of the serial and parallel model
predictions, respectively. Model parameter estimation was performed using the data in the massed schedules. The models were
then used to predict the data in the random schedules. Both models fitted subject data well during the A–B–A massed schedule.
However, during the random schedule, the parallel model predicted the data better than the serial model, as shown by smaller MSE
between the data and the parallel model predictions compared with the MSE between the data and the serial model predictions
( p � 0.0001). The estimated parameters (with 95% confidence intervals) are as follows: for the parallel model, Af � 0.8251
(0.6338 – 0.9767), As � 0.9901 (0.9876 – 0.9986), Bf � 0.3096 (0.1585– 0.5118), and Bs � 0.2147 (0.0582– 0.2729); for the
serial model, Af � 0.8749 (0.7082– 0.9643), As � 0.9917 (0.9894 – 0.9984), Bf � 0.4831 (0.2923– 0.6655), and Bs � 0.0456
(0.0077– 0.1178).
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al., 2008), but both the time-varying-
parameter models and our parallel 1-fast
n-slow model can account for savings,
with only minute differences between pre-
dictions of both models (Fig. 7). Thus, the
parallel 1-fast n-slow model explains sav-
ings during relearning after washout,
without the need for extra parameters and
metalearning process, but at the expense
of multiple parallel states, however.

Discussion
We first showed in simulation that both a
parallel model and a serial model with one
fast process with one state and one slow
process with multiple states can repro-
duce previous single-adaptation data of
spontaneous recovery, anterograde inter-
ference, and dual-adaptation data in both
intermittent and random schedules. Then,
using an experimental dual-adaptation
paradigm, we showed that only a model
architecture in which the fast process with
one state and the slow process with multi-
ple states are arranged in parallel provides
a parsimonious explanation for our data.
This model furthermore accounts for de-
tailed characteristics of savings in relearn-
ing data. Our combined simulation and
experimental analysis thus supports the view that human motor
memory has the following three characteristics during motor ad-
aptation: (1) It contains a single fast-learning–fast-forgetting
process. (2) It contains a slow process with multiple slow-
learning–slow-forgetting states, all with the same learning rates
and the same forgetting rates; these states are switched with con-
textual cues. (3) The two processes are arranged in parallel and
compete for errors during motor adaptation.

Our model, unlike any previous models, can reproduce all of
the following adaptation data: savings, anterograde interference,
spontaneous recovery, and dual-motor adaptation in both inter-
mittent and random schedules. Because the fast process in our
model contains only a single state, the model can account for in-
terferences between different tasks in the experimental para-
digms of savings (Kojima et al., 2004), anterograde interference
(Miall et al., 2004), and spontaneous recovery (Smith et al.,
2006). In all these cases, interferences were observed strongly at
the beginning of task alternations (Tong et al., 2002; Miall et al.,
2004; Imamizu et al., 2007), when the fast process is the most
active. In contrast, because of the lack of context-independent
process, the two n-fast n-slow models and the parallel n-state model
cannot reproduce such data. Because the slow process in our
model contains multiple states switched via a contextual cue in-
put, our model explains dual or multiple motor adaptations
(Shelhamer et al., 2005; Nozaki et al., 2006; Imamizu et al., 2007;
Choi et al., 2008; Howard et al., 2008): during learning of differ-
ent tasks, a separate state stores the learning for each task. Thus,
in our model, as has been recently reported in humans (Criscimagna-
Hemminger and Shadmehr, 2008), learning a new task does
not alter the memory of a previously learned task but produces
a new memory. In contrast, because of the lack of context-
dependent multiple states, two-state models cannot account
for dual adaptation, because introducing a new task causes the
other task to become unlearned.

Our multistate models can also differentiate between serial
and parallel organization of the fast and slow processes, because
of the nonlinearity in the slow process arising from multiplying
the motor error input by the contextual input (Fig. 2 and Eq. 11 in
Materials and Methods). When the contextual input changes fre-
quently, as it does in random schedules, this nonlinearity in the
slow process makes the parallel model learn differently from
the serial model. Based on such different learning predictions
of parallel and serial models in the random schedule, we found
that our experimental data were better supported by a parallel
architecture.

To explain savings in relearning data after a variable number
of washout trials, varying-parameter models (Zarahn et al., 2008)
require continuous adaptation of the parameters [i.e., metalearn-
ing (Schweighofer and Doya, 2003)]. Instead, our parallel 1-fast
n-slow model uses multiple states in a slow process and can re-
produce savings in a washout paradigm only with four free pa-
rameters. During washout trials, the net model output returns
close to the initial, nonadapted condition because the fast process
returns to the initial state and the slow process is switched to the
no-perturbation state based on the given context. In the re-
learning condition, the slow process corresponding to this
perturbation switched back to the previously adapted state,
allowing savings. Because both our model and the varying-
parameter model of Zarahn et al. (2008) reproduce these sav-
ings in relearning data equally well, more-detailed analyses
with yet-to-be-devised experimental protocols are needed to dif-
ferentiate between models. Note, however, that multiple learning
and forgetting rates are needed to explain adaptation in situations
that we did not consider here—adaptation at largely different
timescales such as changing dynamics caused by aging (Kording
et al., 2007) and adaptation after a consolidation (rest) phase
(Fusi et al., 2007; Criscimagna-Hemminger and Shadmehr,
2008).

Figure 7. Simulation of the washout paradigm with the two-state model, the varying-parameter model, and the parallel 1-fast
n-slow model. A, Schedule of the washout paradigm, which consists of 10 null trials, 80 learning trials, 40 washout trials, and 30
relearning trials. In learning and relearning trials, there was 45° of disturbance, and in null and washout trials, no disturbance.
B, Model predictions of errors in the relearning-after-washout paradigm. We used the same parameters as Zarahn et al. (2008) for
the varying-parameter model and two-state model and chose parameters for the parallel 1-fast 1-slow model to reproduce the
results of the varying-parameter model. C, Comparison of model predictions during the initial learning and relearning. First 30 trials
in learning and relearning trials are superimposed. The error traces of the two-state model in learning and relearning trials are
identical and cannot reproduce savings after washout trials. In contrast, the parallel 1-fast n-slow model can predict savings after
washout trials with fewer parameters than the varying-parameter model.
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A number of brain areas and neuronal architectures are pos-
sibly engaged in slow and fast processes during motor adaptation.
These areas include the cerebellar nucleus and the cerebellar cor-
tex (Medina et al., 2002), as well as two cell types in the primary
motor cortex (M1) [Li et al. (2001); also see discussion in the
work of Smith et al. (2006)]. Our 1-fast n-slow model further
predicts that two separate cell populations learn from the same
errors, but at two different timescales. A possible candidate area
for the locus of the fast process is the posterior parietal cortex
(PPC). The PPC is reported as maintaining the internal represen-
tation of the body’s state in visuomotor adaptation (Wolpert et
al., 1998). Area 5 is known to receive motor errors (Kawashima et
al., 1995; Diedrichsen et al., 2005) and PPC learning-related ac-
tivation decreases during the later stage of visuomotor adaptation
(Graydon et al., 2005) (but see Della-Maggiore et al., 2004). A
possible candidate area for the locus of the slow processes with
multiple states is the cerebellum, which contributes to state esti-
mation in visuomotor adaptation (Miall et al., 2007), increases
learning-related activation during the later stage of visuomotor
adaptation (Imamizu et al., 2000; Graydon et al., 2005) (but see
Tseng et al., 2007), and receives motor errors (Gilbert and Thach,
1977; Kawashima et al., 1995; Schweighofer et al., 2004; Diedrich-
sen et al., 2005). Furthermore, functional imaging studies have
revealed that the cerebellum is involved in the modular organi-
zation of multiple states (Imamizu et al., 2003, 2004; Imamizu
and Kawato, 2008).

Because of its simplicity, our proposed 1-fast n-slow paral-
lel model inevitably suffers from a number of limitations.
First, we used an artificial switch to select the appropriate slow
processes based on context. More realistic, automatic, and
adaptive contextual switch performances have been proposed
(Wolpert and Kawato, 1998; Haruno et al., 2001). Second, our
model does not account for generalization across tasks. In our
dual-adaptation experiment, subjects learned task D (50°) better
than task C (�50°) (Fig. 6). This may be because of a greater
transfer of learning from task A (25°) to D than from task B
(�25°) to C, as task A was given 50 more trials than task B. Our
model could be extended to account for such generalization
using contextual cue inputs with a tuning curve across tasks in
the slow process (e.g., Thoroughman and Taylor, 2005).
Third, our model is only a model during motor adaptation and
does not account for consolidation after learning (Criscimagna-
Hemminger and Shadmehr, 2008) or adaptation at longer time-
scales (Kording et al., 2007). Consolidation in particular is well
accounted for by a serial model. Thus, the picture emerges that
during adaptation, motor memory is organized in parallel, with
one fast process and multiple slow processes competing for er-
rors; during consolidation, however, when the system is not ac-
tive, transfer of learning occurs serially. Finally, our model was
inferred from behavioral data only. It thus awaits confirmation
from neural recording or from brain imaging and virtual lesions
using transcranial magnetic stimulation.
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