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(Fig. 3). The resulting map is a function of the
taxonomic cutoff used. At less than 99%, the
model does not show any diversity or bio-
geographic patterns. This is expected because
over 1400 years the genomes evolve by only 0.5%,
corresponding to a 99% identity. However, at
this time there are still provinces that have not
yet experienced a takeover or coalescence event
(Fig. 1A), and those are expected to continue to
diverge beyond the 99% threshold for longer
times. This distribution can change tempora-
rily as a result of takeover events. For example,
at times the Central Pacific and North Pacific
provinces were distinguishable at 99.5% (0.5%
difference, see Fig. 2A).

We conclude that neutral evolution (neutral
mutations and genetic drift) coupled with dis-
persal limitation can produce substantial biogeo-
graphic patterns in the global surface ocean
microbe population. Microbes evolve faster than
the ocean circulation can disperse them, a feature
that can also be seen in molecular observations
(10). The patterns are dynamic. Provinces grad-
ually emerge as subpopulations diverge by neu-
tral evolution and periodically collapse due to
coalescence. Neutral processes, along with envi-
ronmental selection, must be considered in future
research on microbial biogeography, and our
results provide a quantitative benchmark for
their potential role. Our results conflict with
the notion that “everything is everywhere” (11, 32)
and may have important implications for how
the oceans will respond to global change. Our
model provides insights into the role of neutral
evolution in shaping biogeographic patterns. The
biology in the model is relatively simple, and
future work may build on this by considering
more spatial and temporal patterns (e.g., car-
rying capacity, as well as division and death rates
based on ocean productivity) and more explicit
representation of processes (e.g., recombination).
Our modeling approach can theoretically be used
to explore environmental selection as well. This
will require relating genes to function, which is
difficult but can be done for select genes or at the
genome level (23, 33).
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ERROR MEMORY

A memory of errors in
sensorimotor learning

David J. Herzfeld,"* Pavan A. Vaswani,> Mollie K. Marko," Reza Shadmehr*

The current view of motor learning suggests that when we revisit a task, the brain recalls
the motor commands it previously learned. In this view, motor memory is a memory of
motor commands, acquired through trial-and-error and reinforcement. Here we show
that the brain controls how much it is willing to learn from the current error through a
principled mechanism that depends on the history of past errors. This suggests that the
brain stores a previously unknown form of memory, a memory of errors. A mathematical
formulation of this idea provides insights into a host of puzzling experimental data,
including savings and meta-learning, demonstrating that when we are better at a motor
task, it is partly because the brain recognizes the errors it experienced before.

ow does the brain alter behavior after ex-
periencing an error? Classic theories as-
sumed that the brain learns some fraction
of the error regardless of its history or mag-
nitude (7, 2). However, recent experiments
(3-6) demonstrate that the brain learns rela-
tively more from small errors than large errors,
and can modulate its error sensitivity (7-9).
Understanding error sensitivity is important
because it may provide insight into the phenomena
of “savings” and “meta-learning.” Savings refers to
the observation that when a person adapts to per-
turbation (A), and then the perturbation is removed
(i.e., washout), they exhibit faster readaptation
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to (A) (10). Remarkably, savings of (A) is present
even when washout is followed by adaptation to
(-A), a perturbation in the opposite direction (77, 12).
Current error-dependent models of learning can-
not account for these observations (I3, 14), nor
explain meta-learning, where prior exposure to a
random perturbation produces savings (15, 16).

We begin with a standard model of motor learn-
ing (I7-20) in which on trial n, a perturbation a is
imposed on action u so that the sensory conse-
quences are y™ = u( + 2. Based on their
belief about the environment 2™, the learner
predicts the sensory consequences 7" = u(™ 4
2™, and then updates his or her belief from the
prediction error e = y(® — 4™ Such learning
typically depends on a decay factor @, and error
sensitivity n

2D = g™ 4 (g (1)

Consider an environment in which the per-
turbations persist from trial to trial, and another
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environment in which the perturbations switch
(Fig. 1A). In a slowly switching environment, the
brain should learn from error because the pertur-
bations are likely to persist (learning from error
in one trial will improve performance on the sub-
sequent trial). However, in a rapidly switching
environment, the brain should suppress learning
from error because any learning will be detri-
mental to performance on subsequent trials.
Three groups of volunteers (n = 9 per group)
made reaching movements while experiencing
force perturbations from either a slow, medium,
or rapidly switching environment (Fig. 1A). The
mean of the perturbations was zero for all blocks
(consisting of 30 trials). We measured error in a
given trial and then computed the amount that
was learned from that error (probe trials, purple
bars, Fig. 1A). To quantify learning from error on
trial 2, we measured the change in force from the
trial before to the trial after the perturbation,
£ (¢) - £V(¢) (Fig. 1C). In block 1, learning
from error was similar in the three groups (P > 0.99),

and in all probe trials the perturbation produced
similar errors [Fig. 1B; repeated measure-analysis
of variance (RM-ANOVA), effect of group P > 0.8,
interaction, P > 0.7]. However, individuals who
experienced the slowly switching environment
increased their learning from error (Fig. 1C), where-
as those who experienced the rapidly switching
environment suppressed this learning.

‘We measured the force produced on a given trial
and computed a coefficient representing percent
ideal (Fig. 1D). RM-ANOVA indicated a significant
block by group interaction (P < 0.05), suggesting
that the history of perturbations altered the amount
of learning from error. Posthoc tests showed that
in the slowly switching environment, participants
learned more from error than in the rapidly switch-
ing environment (P < 0.03). This change in error
sensitivity developed gradually with training (Fig.
1D). The slowly switching environment induced
an increase in error sensitivity (Fig. 1E; changes
in sensitivity from the first half to second half of
the experiment, ANOVA, P < 0.05).

Is control of error sensitivity local to the ex-
perienced errors? In experiment 2, participants
performed rapid out-and-back movements for
which no visual feedback was available during
the outward part of the reach, with the aim of
hitting a target at the turn-around point of their
movement. An occasional perturbation altered
the feedback regarding hand position at the turn-
around point (Fig. 2A). We measured the relation
between error e®™ and learning from error
(change in reach extent).

Group 1 (n = 10) experienced a perturbation
schedule that transitioned from slow, medium,
to rapid switching (Fig. 2B), whereas group 2
(n = 10) experienced the reverse. In group 1, error
sensitivity decreased, whereas in group 2, error
sensitivity increased (Fig. 2C). We measured
the mean error sensitivity in each environment,
resulting in three measurements for each subject
across the experiment. RM-ANOVA showed a
significant main effect of group (P < 0.005) and
block (P < 0.001) and group-by-block interaction
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(P < 0.001). As the statistics of the perturbation
changed, so did the error sensitivity.

‘We measured learning from error as a function
of error in each environment (Fig. 2D). A given
error produced greater learning when that error
was experienced in a slowly switching environ-
ment (Fig. 2D, red line) (RM-ANOVA main effects
of error size P < 10~ and environment P < 0.001,
posthoc between slow versus medium or fast, P <
0.001). We quantified error sensitivity at each er-
ror size (Fig. 2E) and found that error sensitivity
had not changed globally, but had changed pre-
dominantly for smaller error sizes. RM-ANOVA of
the absolute sensitivities between 0.25 and 2 cm
showed a significant main effect of environment
(P <107, as well as a significant environment by
error size interaction (P < 0.05). We found a sig-
nificant difference in error sensitivity across envi-
ronments for an error size of 0.25 cm (P < 0.05),
but no significant difference for an error size
of 2 cm (P > 0.1). Interestingly, the small error
sizes for which the participants had shown
the largest change in error sensitivity were also
the most frequent errors (Fig. 2F). This hinted
that control of error sensitivity was a function
of error.

Current models of sensorimotor learning as-
sume that error sensitivity n<"> is independent
of error e™. This is true for state-space models
of learning (I8, 21-24), as well as Kalman filter
models of learning (5, 25-27). However, suppose
that sensory prediction errors are encoded in
the nervous system with a set of basis elements,
where each basis element g; has a preferred er-
ror ¢;. Further, suppose that error sensitivity is
determined by a population coding

n(e™) = Y wigi(e™)
i
—(e - &;)*
202

©)
gi(e™) = exp

On trial 7 — 1, the motor command «("
produces an error e, as illustrated in the
top part of Fig. 3A. The nervous system learns
from this error and produces motor command
u™ on the subsequent trial, resulting in ¢®. In a
slowly switching environment (top part of Fig.
3A), e has the same sign as eV, In this case,
error sensitivity should increase around e(”!
(Fig. 3B, red line). By contrast, in a rapidly switch-
ing environment (Fig. 3A, bottom), ¢ has a
different sign than eV, In this case, error sen-
sitivity should decrease

(n-1)

41 _ ) s (1) () g(e" )
W = W o Bsign(e™ e ) T g
(3)
In Eq. (3), w=[w w0, wy]’, g=

(81 & gN}T, and superscript 7 is the
transpose operator. This rule is similar to the
RPROP algorithm, a heuristic for adjusting
the learning rate of machines (28), but has the
unique feature of assuming that error sensitivity
is via population coding of the error space.
Equations 1 to 3 represent a learner that stores
two kinds of memory: a memory of the state of
environment (2, Eq. 1) and a memory of errors
(w, Eq. 3). We simulated the model (Fig. 3C, gray
line) and found that in the slowly switching envi-
ronment, error sensitivity increased in the neigh-
borhood of the experienced errors, whereas in the

rapidly changing environment, error sensitivity
decreased (Fig. 3D).

Our model made a critical prediction: If the
brain controlled error sensitivity via memory of
errors, then it should be possible to simultaneously
increase sensitivity for one error, while decreas-
ing it for another. In experiment 3, we considered
an isometric task in which participants (n = 16)
produced a force to match a target (16 N) in the
face of a perturbation. The perturbations were
designed so that, according to our model, indi-
viduals would increase their sensitivity to -4 N
errors, while simultaneously decreasing their
sensitivity to +8 N errors.

In the baseline block, we probed sensitivity to
+8 N and -4 N perturbations (probe 1, Fig. 3E).
The resulting learning from error is plotted in
Fig. 3F (probe 1). At baseline, participants re-
sponded to the +8 N and -4 N perturbations
by learning a fraction of each error (Fig. 3F).
We next produced 20 repetitions of a rapidly
switching environment in which the perturba-
tions were +8 N (Fig. 3E, inset). After a period of
washout, we then produced 15 repetitions of a
slowly switching environment in which the per-
turbations were 0 N or +4 N. The critical aspect
of our design was that the participants were never
exposed to a -4 N perturbation. They neverthe-
less experienced -4 N errors (because removal of a
learned +4 N perturbation results in a -4 N error).

The 8 N environment induced a decrease in
sensitivity to a +8 N error, and subsequent exposure
to the +4: N environment resulted in an increase in
sensitivity to a -4 N error [Fig. 3G; RM-ANOVA
showed a significant main effect of perturbation
(P < 0.03) as well as a perturbation by block
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interaction, P < 0.01]. The critical question,
however, was whether both of these changes in
sensitivity were simultaneously present. After the
slowly switching block of perturbations, we again
probed sensitivity to +8 N and -4 N errors
(probe 2, Fig. 3E). Compared to the baseline
block (probe 1), learning from a +8 N error had
decreased (P < 0.005), while simultaneously, learn-
ing from a -4 N error had increased (P < 0.05)
(Fig. 3F). When we ran our model on the same
sequence of errors that participants had experi-
enced, the change in error sensitivity predicted by
the model was highly correlated with the change
observed in our participants (B> = 0.65; P < 1078,
fig. S1), suggesting that history of error induced
changes in error sensitivity in the region of the
experienced errors.

This new model of learning provided insights
on a wide range of puzzling experiments, in-
cluding the phenomena of savings and meta-

1352 12 SEPTEMBER 2014 « VOL 345 ISSUE 6202

learning (fig. S2). It predicted that when one is
better at a task than before, it is not because the
brain recalled the motor commands, but because
it recognized the errors—the errors for which er-
ror sensitivity had been altered. In addition, the
model predicted that savings and meta-learning
could be blocked by controlling the errors that are
experienced during learning.

In experiment 4, volunteers participated in a
visuomotor rotation experiment (Fig. 4A and fig.
S4, m = 10 per group). The control group (ANA)
experienced a +30° perturbation followed by
extended washout and then relearning of +30°,
a protocol that should produce savings (13). Ac-
cording to our model, savings occurs because
during the initial exposure to (A), the stable se-
quence of perturbations increase error sensitivity,
and these errors are revisited in the subsequent
test of (A). If so, we should be able to block
savings by presenting (A) gradually (GNA group,

fig. S4)), preventing prior exposure to errors that
are visited at the onset of (A).

Furthermore, we should be able to produce
savings in a very different way: Expose partici-
pants to perturbation (B) and then present sud-
den washout (Fig. 4A, BNA). During washout,
they are exposed to a sequence of stable errors,
which increase error sensitivity for those errors.
Notably, the washout-induced aftereffects are
errors that are also experienced during subse-
quent test of (A). If the meta-learning in BNA is
due to errors that are experienced during wash-
out of (B), we should be able to eliminate it by
reducing the washout-induced errors. In By NA,
a wait period was inserted between -30° train-
ing and washout, reducing the size of after-
effects associated with the transition from -30°
to washout (Fig. 4E). We also tested this idea
in a different way: gradual washout (B) (group
BGNA, fig. S4). In summary, the model predicted
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savings in ANA but not GNA, and meta-learning
in BNA but not B,,;NA and BGNA. Our experi-
mental results confirmed these predictions (Fig. 4,
C and D, and fig. S4).

We found that during learning, the brain con-
trolled error sensitivity in a principled way: learn-
ing more from error when perturbations were
likely to persist, and less when perturbations were
likely to change. Error-sensitivity modulation was
specific to the experienced errors, suggesting
that training produced a memory of errors. This
idea accounted for a host of puzzling observations,
including saturation of error sensitivity (5, 6, 29),
the phenomenon of meta-learning (I16), examples
of savings (10-12), and reinforced repetition (75).

The model predicted that meta-learning vanishes
when a small delay or gradual washout alters the
history of errors (Fig. 4A), demonstrating that
savings depends crucially on the memory of errors
that is accumulated during training. This memory
of errors likely exists in parallel with the two
traditional forms of motor memory, memory of
perturbations (23) and memory of actions (30).

In our model, we chose to describe the learner
as a process with a single time scale. However,
data suggest that learning from error depends
on a fast and a slow process with different error
sensitivities (23, 25, 31). We speculate that the
memory of errors exerts its influence through
the error sensitivity of the fast process, and its
manipulation through history of errors may be
a useful strategy to speed recovery during re-
habilitation (32).
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In the main text, we formulated a new mathematical model of motor learning in which we hypothesized
that the brain not only learned from errors that were experienced in each trial, but also accumulated
them into a memory of errors. This memory of errors made it possible for the brain to recognize errors
that it had experienced before, resulting in the ability to control error-sensitivity, i.e., control how much
it was willing to learn from a given error. Here, we describe the steps that we took to test this
mathematical model.

We performed four experiments to test the predictions of the model. In these experiments we
considered various motor behaviors, including reaching and isometric paradigms, as well as various
perturbations, including proprioceptive and visual modalities. A total of n = 113 right-handed volunteers
participated in our experiments. The volunteers had no known neurological problems and were naive to
the purpose of the experiments. Protocols were approved by the Johns Hopkins School of Medicine
Institutional Review Board. All subjects signed an informed consent form.

In addition to these experiments, we tested the model by considering a host of previously
published results in various motor learning paradigms, including reaching, walking, and saccades. We
chose these experiments because they represented puzzling data sets that were difficult to interpret
within the current framework of motor learning. We used our model to simulate these experiments,
and then compared the results with the experimental data. In sum, we tested whether a single idea,
memory of errors, could provide a framework sufficient to unify the disparate data sets into one

coherent body of results.

Experiment 1
In Exp. 1 we used a between-subject design to test the idea that the nervous system could modulate
error-sensitivity. To do so, we used a constant perturbation in probe trials to produce an error in the
movement and quantified how much the nervous system learned from this error.

Volunteers (n = 27, 23.6 + 4.3 years old, mean + SD, 16 female) were asked to hold the handle of a
robotic arm and make rapid out-and-back reaching movements to a target presented 10cm directly in

front of them. In some trials, their reach was perturbed by a velocity dependent curl field, where force

SHh

In Eq. (s1), Xxand y are the components of the subject’s hand velocity. The force pushed the subject’s

f was related to hand velocity as:

hand perpendicular to the direction of movement on the outward reach, but was turned off on the



reach back. Perturbations were either clockwise ( b =13 N.s/m) or counter-clockwise (b =-13 N.s/m).
The subject’s hand was occluded by an opaque horizontal screen located above the plane of the arm.
An overhead projector displayed information about hand position and targets on this screen.
Continuous feedback of the location of the hand was presented via a cursor (0.3cm in diameter). At the
onset of each trial, subjects were presented with a start circle (1.0cm in diameter). Once the hand was
placed inside this circle, following a randomly chosen inter-trial interval [0.25 - 0.75]sec a target circle
(1.0cm in diameter) was displayed and an auditory tone was played. The display of the target and the
sound of the tone served as the ‘go’ instruction. If the hand passed through the target circle in
300+30ms, the subject was rewarded with an animation of an explosion, an auditory tone, and a point
added to their score. If the hand passed through the circle after 330ms, the target circle turned blue
(indicating a movement that was too slow). Otherwise, if the subject’s hand arrived at the target circle
in less than 270ms, the circle turned red. The subjects were not required to have the turn-around point
of their reach in the target circle; rather, they merely had to pass through the target to obtain reward.
In some instances, the reach missed the target entirely. In this case, no reward or timing feedback was
provided to the subject. Subjects were instructed to obtain as many points as possible.

Consider an environment in which the perturbations tend to switch slowly, i.e., persist from trial to
trial, as compared to one in which the perturbations are rapidly switch. We can define this environment
in terms of a Markov chain in which the perturbations can take on one of two states (Fig. 1A, top). For
example, the perturbation can be + 1 or -1, where +1 refers to a force field that pushes the hand
clockwise, and -1 refers to a field that pushes the hand counter-clockwise. The perturbation state can
change from one trial to the next, and this change is governed by a transition probability z. In the
slowly switching environment, the probability of staying in a given perturbation state is high (z=0.9),
whereas in the rapidly switching environment, this probability is low (z=0.1). As a result, in the slowly
switching environment the perturbations tend to repeat from one trial to the next, whereas in the
rapidly switching environment the perturbations tend to change. We hypothesized that the brain would
learn more from the error induced by the perturbation in the slowly switching environment because
that perturbation was likely to persist (learning from error in one trial would improve performance on
the subsequent trial). However, in the rapidly switching environment the brain would suppress learning
from error because the perturbation that produced that error was likely to change (any learning would
be detrimental to performance on the subsequent trial).

To produce such environments, we considered a perturbation schedule that was stochastic, as

illustrated by the Markov chain in Fig. 1A. The perturbation state, labeled by variable b (indicating the



field produced by the robot) was a binomial, taking on one of two values [+13, -13]Ns./m. For example,

(n-1)

suppose that on trial n—1 the perturbation state is b . Then the perturbation on trial n is

determined by the following probabilities:
Pr(b” =b"") =2z

pr(b(n) :_b(nfl))zl_z (s2)

Eq. (s2) implies that if z=1, then the perturbation is likely to repeat, i.e., the environment is slowly
switching and persistent. However, if z =0, then the perturbation is likely to change; the environment
is rapidly switching.

We randomly divided our subjects into three groups and generated a single perturbation schedule
for each group using Eq. (s2). One group (n = 9) experienced a slowly switching environment (z=0.9),
another group (n = 9) experienced a medium switching environment (z =0.5), and a final group (n =9)
experienced a rapidly switching environment (z=0.1). All groups began their training in a baseline
block (156 trials). In the baseline block there were no perturbations, except for occasional probe trials in
which we measured error-sensitivity, described below and illustrated in the inset of Fig. 1A. Following
the baseline block, subjects experienced 5 blocks of perturbation trials (225 trials each). In each
perturbation block there were 5 mini-blocks (learning block). Each mini-block included 30 perturbation
trials, 10 washout trials, and 5 probe trials. In each mini-block the number of trials with clockwise or
counter-clockwise perturbation was equal to 15. In this way, the mean of the perturbations in each
block, as well as the mean of the perturbations in each mini-block, was zero for all subjects regardless of
the environment. Furthermore, variances of the perturbations were identical across groups. The critical
difference was the order of the perturbations. The experiment lasted about an hour. Subjects were
allowed a 1-3 minute break between each block of trials.

Our objective was to estimate error-sensitivity during each block and ask whether this quantity
changed as the subjects experienced the various environments. We approached the problem by
considering a standard model of learning(18, 22, 24) in which on trial n, a perturbation x isimposed on

™ Ontrial n,

action u so that the sensory consequences observed by the learner are y(") =u" +x
the learner predicts the sensory consequences )7(") =y 4+ x\" , and updates its belief about the state of

the perturbation from the prediction error e = y(") —)7("). Such learning typically depends on a decay

factor a, and error-sensitivity 77:

)’%(n+1) — G)?(n) + n(n)e(n) (s3)



If we assume that u, is the motor command generated in the null environment in which there are no

perturbations, then the motor commands on a given trial is a proxy for the learner’s estimate of the
state of the perturbation:

(n) 5(n)
"=u,—-x" (s4)

u

To measure error-sensitivity, we used probes that consisted of pairs and triplets of error-clamp
trials(6). An error-clamp(21) is a trial in which the robot produces a channel with stiff walls along a line
connecting the start position to the target, thereby reducing deviations from a straight line, eliminating

error from that trial while allowing one to measure the forces that the subject produces against the

channel walls. The error-clamp had the following properties: spring coefficient = 6000 N/m, damping

coefficient = 250 N.s/m. On error-clamp trial n our proxy for motor output was u" . Tofind u'"™, we

first regressed the measured force f(t) that the subject had produced against channel walls onto the

ideal force f (t)=by(t) and found the parameters k, and k; that minimized the quantity

* 2
(f(t) -k f (t) —ko) , and then set u'” = k, . To measure error-sensitivity n'™ , we first used Eq. (s3) to

estimate a for each subject from all pairs of error-clamp trials that did not have a perturbation (Fig. 1A,

green probe trials). As the subject did not experience an error in the first error-clamp, the forgetting

(n+1)

factor was found by dividing the motor commands in the two trials: a = . Next, we used this

u(n)

estimate of a to estimate 77(") from each triplet of error-clamp trials (Fig. 1A, lavender probe trials) in

which there was a perturbation in the middle trial. The perturbation in this probe was always a counter-

clockwise field (b =-13 N.s/m). As a result, we have:

- u(n+1) _azu(nfl)

P (s5)

In the above equation, e is the error on trial n , Which we estimated by measuring the displacement

of the hand from a straight line to the target at maximum velocity (this took place at 147+6.2ms,

(n+1)

meantSEM, into the movement). We estimated learning from error (u a*u" ) and error-

sensitivity by binning the data for 5 probe trials in each environment block.

Experiment 2
In Exp. 2 we designed a within-subject protocol to test the idea that a change in the history of

perturbations would result in a change in error-sensitivity. Furthermore, in this protocol we had the



capacity to measure error-sensitivity on each trial. This allowed us to test whether changes in error-
sensitivity were global, affecting learning from all error sizes, or local, specific to a range of error sizes.

We enrolled a new group of right-handed volunteers (n = 20, 24.1 + 4.5 years old, mean = SD,
including 10 females) who were naive to the purpose of the experiment. As in Exp. 1, subjects were
asked to make rapid out-and-back reaching movements to a target at 10cm. However, unlike Exp. 1,
there were no forces to perturb the movement (all movements were in error-clamp). Instead, we
perturbed the visual feedback associated with position of the hand. At 100ms after reach onset, we
removed the visual feedback, and then re-displayed hand position at the turn-around point of the reach
by placing a stationary yellow dot at that location (Fig. 2A). In some trials the location of this dot was
perturbed by either a 1.1x (magnifying) or a 0.9x (minifying) gain. We restored visual feedback of the
hand after this turn-around point, but manipulated the location of the cursor using a gain so that it
appeared that the subject had reached to the location indicated by the yellow dot. A trial was
considered successful if the yellow dot fell within the target circle. Subjects were rewarded by a visual
animation of an explosion, and the addition of a point to their score. They were instructed to maximize
the total number of rewarded trials.

The difference between the visual feedback and the target position was our proxy for error. The
brain responded to this error by changing the motor commands on the next trial, increasing or
decreasing the extent of the reach. Because visual feedback was not available during the outward
portion of the reach, the design of the experiment allowed us to measure error-sensitivity at every trial

(the change in the magnitude of the reach divided by the experienced error). Suppose that on trial n, a

perturbation was imposed, resulting in an error e (defined as the difference between target position
and the cursor position displayed to the subject to indicate their hand’s turn-around point). We
estimated the forgetting factora in pairs of consecutive error-clamp trials via a technique identical to
Exp. 1 (Fig. 2A, lavender trials).

Subjects were divided into two groups (n = 10 in each group). Both groups experienced a baseline
block (100 trials, no perturbations). Following the baseline block, Group 1 (Fig. 2B) experienced three
perturbation blocks, each 387 trials, composed of a slowly switching environment (z = 0.9), a medium
switching environment (z = 0.5), and a rapidly switching environment (z = 0.1). Group 2 experienced the
reverse sequence of environments. All subjects in each group experienced the same perturbation
schedule. Each block was composed of 9 mini-blocks (30 perturbation trials, 10 no perturbations, and a
probe triplet of trials). The mean of the perturbations within each mini-block, as well as the mean of the

perturbations within each block, was zero.



We found that a change in perturbation statistics resulted in a change in error-sensitivity (Fig. 2C),
and that the largest changes occurred where subjects experienced the majority of the errors (Fig. 2E and

Fig. 2F). This suggests that error-sensitivity was a function of the experienced error.

A model of error sensitivity

When participants experience a prediction error, they update their motor command on the next trial to
compensate for a fraction of that error. This can be mathematically described by a state space model
(Egs. s3 and s4), where e is the error and a is a retention factor. Eq. (s3) describes a model in which
the learner uses prediction error to form an estimate of the state of the environment, resulting in a
memory of that state. Because our results from Exp. 2 suggested that error-sensitivity was a function of
error, we constructed a new set of equations to account for a memory of errors (Eg. 2 and 3). In this

model, the learner has a set of basis elements with which it encodes the error experienced on a given

trial. In our simulations, we assumed that N basis functions with centers located at é, that were

uniformly distributed throughout a symmetric error space €,e[—P,P],i=1...N . In addition, we
assumed that at the beginning of the simulations all weights were equal (i.e. there was a constant error-

sensitivity), w. Therefore, our model that learned to represent the state of the environment had one
parameter, a . Our model that controlled error-sensitivity had two parameters: o, and £. In total,
our model had 3 parameters.

In Fig. 3B we implemented this model with 10 basis elements, € equally spaced between -5 and 5,
o=1,a=1,and #=0.05. Inthe model, sensitivity is a function of error size, and so any change in

sensitivity is local to the errors experienced in the recent trials. Suppose that on trial n—1, the motor

(n-1) (n

command produces error e =—1. If on the next trial the error e is of the same sign as e" ™", then

sign(e("fl)e(") ) =1 and error-sensitivity is increased around the neighborhood of el (Fig. 3A, top).

As a result, learning from error is increased about e =—1, as illustrated by the red line in Fig. 3B. This
means that if this error is ever experienced again, the system will learn more from it than before. On

(n-1) (n-1) .(n)

) sign(e e ): —1 (Fig. 3A, bottom), and

(n

the other hand, if e is of the opposite sign as e

sensitivity is decreased about e =—1, resulting in reduced learning from error around this
neighborhood (as illustrated by the blue line in Fig. 3B).
In Fig. 3C we simulated the model in the slow (z = 0.9), medium (z = 0.5), and rapidly switching (z =

0.1) environments (identical parameters as in Fig. 3B except £ =0.001). In all cases, the model learns



from error on each trial, as illustrated by the gray line in Fig. 3C. However, the errors in the slowly

switching environment tend to repeat, that is E[sign(e(”’”e‘”) )] >0, where E[ ] is the expected

value operator. As a result, in the slowly switching environment error-sensitivity increases, producing
an increase in learning from error (Fig. 3D, red-line). The errors in the medium switching environment

have the following structure: E[sign(e("_”e("))] ~ 0. This produces little or no change in sensitivity,

resulting in little or no change in learning from error, as illustrated by the green line in Fig. 3D. Finally,
errors in the rapidly switching environment have the following structure: E[sign(e("_l)e("))] <0, that

is, error in one trial is usually of the opposite sign of the error in the previous trial. As a result, error-
sensitivity decreases (Fig. 3D, blue line). The learning from error curves are qualitatively similar to those

measured experimentally in Exp. 2 (Fig. 2D).

Experiment 3

In Exp. 3 we set out to test a critical prediction of the model: that by manipulating the history of errors
that were experienced by the subject, we could simultaneously increase error-sensitivity for one range
of errors, while decreasing it for another range.

We recruited a new group of right-handed volunteers (n = 16, 25.8 + 2.6 years old, mean % SD,
including 6 female) who were naive to the purpose of the experiment. They held a handle attached to a
stationary force transducer. The handle was located 20-30cm in front of the subject, such that they
could push against it comfortably while seated. The subject’s hand was hidden from view by an opaque
horizontal screen. Feedback regarding force generation was provided by an image projected on the
screen. The objective of this isometric task was to produce a goal force of 16N.

At the onset of a trial, a start circle and a goal circle (both 0.75N in diameter) appeared. The
goal circle was located approximately 15cm from the start circle. The screen was scaled such that a
15cm cursor displacement corresponded to 16N force. A cursor (0.3N diameter) appeared at trial onset.

The displacement of the cursor corresponded to the total amount of force that the subject produced,
multiplied by a scaling factor: s,/fx2 +fy2 , Where s corresponds to a scaling factor that maps units of

force into screen displacement (15cm/16N).
As the subject began pushing toward the target, we removed visual feedback when the cursor
position reached 1/5 of the way to the target (>3.20N), and then placed a yellow dot on the screen (0.5N

diameter) in the location corresponding to the maximum force that they produced. In some trials we



perturbed the location of this dot by adding an offset x. Visual feedback of the cursor was then
restored as the force produced by the subject returned to zero. We scaled the position of the cursor
continuously during the return so that it appeared that the subject had produced the force signified by
the perturbed dot. Once the cursor had returned to the starting circle, the maximum force dot
remained on the screen for 0.5s before the cursor, maximum force dot, and target circle disappeared.
The subject then waited for an inter-trial-interval to elapse (randomly chosen between [0.25, 0.75]sec)
before the next trial began.

A trial was successful if the yellow dot, corresponding to the subject’s maximum force (plus the
perturbation) landed inside the goal target. Feedback of a successful movement was indicated by an
animation of an explosion and a point added to the score. If the subject failed to produce a force
greater than 3.20N within 1.5 seconds of the go cue, the trial was aborted. Subjects were instructed to
maximize the number of points.

The perturbation schedule is shown in Fig. 3E. The perturbations were designed so that, in
theory, subjects would increase their sensitivity to +4N and -4N errors (despite the fact that they never
experienced a -4N perturbation), while simultaneously decreasing their sensitivity to +8N and -8N
errors. The experiment began with a baseline block (50 trials, no perturbations). Following the baseline
block, we probed sensitivity to +8N and -4N perturbations (labeled as Probe 1 in Fig. 3E). We then
exposed subjects to 20 repetitions of an alternating [+8N, -8N] environment, followed by 15 repetitions
of a stable [ON, +4N] environment. Finally, we again probed sensitivity to +8N and -4N perturbations
(labeled as Probe 2 in Fig. 3E). The experiment was divided into 6 blocks (105-120 trials each). The
experiment took approximately 45 minutes to complete.

How well could the model explain behavior in this experiment? In Figure S1A we have plotted
learning from error as a function of error size for all subjects across the entire data set. Remarkably, we
found that the learning from error was not monotonic. Rather, subjects learned significantly more from
a #4N error than 8N error (paired t-test, t(15) = 7.76, p < 0.001). Figure S1B plots the difference
between learning from error and the regression line (our proxy for an unbiased learner). This reflects
the change in learning that has been caused by the changes in error-sensitivity. We ran our model on
the same sequence of errors that each subject experienced in Exp. 3 and have plotted the predicted
change in Figure S1B (scaled by a multiplicative coefficient to convert to units of Newtons). The

correlation between the predicted and observed values was R* = 0.65, p < 10°®. Therefore, as the model



had predicted, we were able to use the history of errors to simultaneously increase learning at one error

size, and decrease learning at another.

Modeling of previous experiments

Let us use this model to shed light on a set of puzzling observations in the field of motor learning, in
paradigms such as reaching, walking, and saccades. For each simulation, we chose model parameters
such that the errors experienced by the model were similar to the errors reported in the respective

papers. However, similar qualitative results would be obtained for other parameter values.

1. Why does learning from error saturate with large perturbations?

Fine and Thoroughman (29) examined reaching movements that were perturbed by a force-pulse. The
perturbations were drawn from a discrete uniform distribution: [+6, £12, +18]N and presented in 80% of
the trials. They examined learning (change in motor commands from the trial prior to the trial after the
perturbation) and noted that this measure did not grow linearly with perturbation size, but saturated
(black bars, Fig. S2A). We ran our model on a perturbation schedule with the same distribution (50
iterations, 360 trials each, 80% perturbations, discrete perturbations drawn uniformly from [+6, £12,
+18]N). In our model, error was encoded by 50 Gaussian bases distributed throughout an error space
between 30N, with a standard deviation of 7N. The initial weights of this network were set so that the
error-sensitivity was roughly at 20%, a value typical for force field tasks(22). We allowed the weights to

change with £ =0.005. After simulating the motor output for each trial, we estimated the learning

following a particular perturbation by measuring the mean trial-to-trial change in motor output for each
of the discrete perturbations. The results are shown with the red line in Figure S2A. The
correspondence between model and experimental data is R” = 0.99+0.005 (mean+SD of 50 simulations).

Wei and Koérding (5) measured learning from error in a visual displacement task (Fig. S2B, black
bars). Subjects were asked to reach in the horizontal direction, and the location of the visual feedback
was displaced in the vertical direction. Participants experienced 900 trials in which the perturbation on
each trial was drawn from a discrete uniform distribution: [0, +1, £2, 4, +8]cm, and learning was
measured by changes in motor commands in the vertical direction. We simulated the results for 50
randomly generated perturbation schedules with the same characteristics. We distributed 50 Gaussian
bases throughout an error space between +10cm, with a standard deviation of 1cm. The initial

sensitivity was set at 5%. We allowed the weights to change with £ =0.005 (i.e., unchanged from the

10



above simulations). The model results are shown by the red line in Figure S2B. The correspondence
between model and experimental data is R? = 0.70£0.17 (mean * SD of 50 simulations).

Why did the learning saturate for large perturbations? The model explained that this was
because the perturbations that were used in these experiments were drawn from a bounded uniform
distribution. With such a distribution, error-sensitivity declines (and as a consequence, learning from
error saturates) for the large errors produced by the perturbations near the bounds. This is because
after experiencing an error from a perturbation near one of the bounds, it is much more likely that the

next perturbation will produce a change in the sign of the error than not. To illustrate this, in the Figure

S3A (top subplot) we have plotted the quantity E[sign(e(")e("”) )} as a function of the perturbation

size on trial n. We find that the expected value is positive for small perturbations and negative for large
perturbations. As a consequence of this uniform bounded distribution of perturbations, error-sensitivity
decreases for large perturbations, as illustrated by the learning from error curve in Figure S3A (right
subplot). Itis also important to note that because the mean of the perturbation distribution is zero, the
positive expected values around the mean perturbation produce little or no changes in learning from
error function (Figure S3A, right subplot). That is, even though sensitivity increases for small errors
(e~0), learning from error is small for these errors. The dominant effect is the reduced error-

sensitivity for errors other than those produced by the mean of the perturbation.

2. Why does error-sensitivity depend on the mean of the perturbation distribution?

Fine and Thoroughman (40) performed a force-field adaptation study in which the perturbations were
similar to their previous study(29). However, subjects practiced in one of three environments:
unbiased, in which the magnitude of the force-field was drawn from a zero mean discrete uniform
distribution [+36, +24, +12, -12, -24, -36]Ns/m, weakly biased [+18, +9, -9, -18, -27, -36]Ns/m, or strongly
biased [-6, -12, -18, -24, -36]Ns/m (Fig. S2C). If error-sensitivity is independent of error history, the three
groups of data points should have the same slope. However, the authors found that the slope of the
learning curve vs. perturbation magnitude was greater (more steep) for the strongly biased distribution,
and smaller for the unbiased distribution. We ran our model on the same distributions (50 simulation
runs per distribution) and have plotted the results in Fig. S2C. We used the same choice of model
parameters for this simulation as we did for Fine and Thoroughman (29), except that the error space

was enlarged to accommodate the larger perturbations (N =50, P=50N, o =7N, £ =0.005). The

model results are shown in Fig. S2C. The correspondence between the model and experimental data is
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R?=0.97 + 0.008 (mean + SD). Note that the model SEM bars are very small in Fig. $2C and are obscured

by the circle data markers.

In Figure S3B we have plotted the quantity E[sign(e(")e("“) )] as a function of perturbation size

for this experiment. Each function has a peak near the mean of the corresponding distribution, but
there is a clear asymmetry in the function associated with the strongly biased distribution, whereas the

function is symmetric for the unbiased distribution. When the distribution of the perturbation is
unbiased, the function E[sign(e(")e("“) )] is symmetric and generally negative for non-zero errors,

suppressing learning from errors that arise from both positive and negative perturbations. In contrast,
when the distribution is strongly biased, the expected value is asymmetric, only suppressing learning
from errors that arise from large negative perturbations. In both cases, sensitivity is reduced to
perturbation near the bounds of the uniform distribution, as in (5, 29). However, because of the
distribution of errors in the strongly biased group, the expected change in sensitivity is asymmetric. As a
consequence, learning from perturbation (Figure S2C) is shallow for the unbiased distribution since

sensitivity is reduced for most perturbation magnitudes, but steep for the strongly biased distribution.

3. Why does error-sensitivity depend on the sequential order of the perturbation distributions?
In the above experiments, each group of subjects experienced one distribution of perturbations. Let us
now consider what happens when different group of subjects experience a given set of distributions in
distinct sequence.

Semrau, Daitch and Thoroughman (33) performed a visuomotor rotation experiment. Similar to
Fine and Thoroughman (40), perturbations were presented in 80% of the trials. However, subjects were
exposed to a sequence of three different perturbation distributions: unbiased [+30, +20, £10, 0]°, weakly
biased [+30, +22.5, +15, +7.5, 0, -7.5 -15]°, or strongly biased [30, 25, 20, 15, 10, 5, 0]°. The order of the
environments was counterbalanced across the two groups of participants. The authors found that there
was an order effect: learning in a given environment depended on the specific order in which the
environments were experienced. Subjects that experienced the strongly bias distribution first showed a
steep learning function (Fig. S2D, top subplot, blue line), whereas participants that experienced the
strongly biased perturbation last (Fig. S2E, top subplot, blue line) showed a shallow learning function.

We constructed a perturbation schedule which copied this design and simulated our model with
the same order of perturbation distributions. As before, the error space was encoded by 50 Gaussian

bases throughout a 40° error space with an initial sensitivity of 20% (o =10 °, #=0.005, a=0.8). The

12



model’s results are shown in Figures S2D and S2E. The correspondence between model and
experimental data is R* = 0.86 (Figure S2D, p < 10®) and R* = 0.93 (Figure S2E, p < 10™).

The group that experienced the strongly biased distribution last had already experienced the
weakly biased and unbiased distributions. Each of these prior experiences reduced error sensitivity for
the perturbations near the bounds. Because all three distributions shared one of the bounds, the
reduction in the error-sensitivity was particularly strong near this bound for the group that had
experienced the unbiased and weakly biased distributions before the strongly biased distribution. As a
consequence, the group with the prior experience showed a shallower learning curve than the group

without the prior experience.

4. Model explains data attributed to structural learning
Let us now consider a remarkable observation termed structural learning. A key experiment is that of
Turnham, Braun and Wolpert (16), in which subjects perform a visuomotor rotation task. The
participants in the random condition trained in an environment in which the perturbation on the odd
trials was drawn randomly and without replacement from a discrete sequence uniformly spanning the
range [-60° to +60°]. Importantly, the even trials had a perturbation that was always the same as in the
previous odd trial. That is, perturbations repeated twice in a row. [In the experiment, subjects were
tested in 8 directions, termed a ‘cycle’. Here, we considered a simpler version of this experiment in
which there is only one direction and a trial represents a cycle.] An example of such a random
distribution of perturbations is shown in Figure S2F (left sub-figure, black line). Following this training,
the subjects were tested in a series of constant visuomotor perturbations of [+30, -30, +30]°. The
authors found that as compared to a control group, subjects that had this prior training in the random
perturbations showed faster learning in the subsequent constant perturbations (Fig. S2F, top-right).
That is, the experience of the random perturbations appeared to facilitate learning of a constant
perturbation, a phenomenon that the authors interpreted as structural learning. A second group
completed a gradually imposed perturbation which spanned the range [-60° to +60°]. Importantly,
subjects in this experiment did not fully compensate for the errors when the gradually imposed
perturbations became large (c.f. Fig. 3 of (16)), resulting in persistent and repeating errors (see Figure
S3C, right subplot).

We constructed similar perturbation schedules as the authors of this experiment. We used
simulation parameters that were identical to those used in the visuomotor rotation experiment

described above for Semrau and colleagues except that we increased the size of the error range to
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accommodate the larger perturbations. As before, we used 50 Gaussian bases to span the error range [-
150, 150]°, with an initial sensitivity of 20%. We assumed that each of these bases had a standard

deviation of 10°. Finally, we set a=0.8 in Eq. (1) and £ =0.005. Our model reproduced the basic

observation that following training in the random sequence, learning was faster than control in the
series of constant perturbation of [+30, -30, +30]° (Fig. S2F, bottom-right). In addition, the model
reproduced the result that learning was faster than control following the gradual perturbation. Finally,
the model reproduced the observation that the gradual group performed slightly better than the
random group in both the test of +30 and test of -30 conditions.

According to our model, the key fact in these experiments was the repetition of errors in the initial
training, and then re-experiencing of these errors in the subsequent testing. In the random group, the
repetition came about because every even trial had the same perturbation as the previous odd trial,
resulting in sequence of errors that were likely to have the same sign, up-regulating error-sensitivity for
the error experienced in the odd trial. In the gradual group, the repetition came about because the
subjects could not adapt as fast as the gradually imposed perturbation, resulting in errors that
accumulated and repeated near the end of the gradual perturbation (see Figure S3C, right subplot for
data from the original experiment, and Figure S2F, bottom subplot for simulation data).

The model explained that in the random group, the faster than control learning that was observed
was not due to a memory of perturbations (as the mean of the perturbation sequence was zero), but
due to the accumulation of memory of errors. The +30° constant perturbation produced a +30° error,

for which error-sensitivity had increased due to exposure to the previous ‘random’ perturbation. This is

shown by the quantity E[sign(e(")e("ﬂ) )], plotted for various error sizes in Figure S3C (left subplot,

labeled ‘paired random’). Note that the E[sign(e(")e("ﬂ))] >0 for all errors, resulting increased error-

sensitivity for all errors. The model explained that this increase in error-sensitivity would not have

occurred if the perturbations on the even trials were unrelated to the perturbations on the previous odd

trial (Figure S3C, left subplot, labeled ‘single random’) where E[sign(e(")e(m) )] ~ 0 for all errors. As a

result, we found that error-sensitivity remained at near baseline, and the model did not show savings, as
illustrated in Figure S3D.

The model explained that in the gradual group, the faster learning that was observed (with respect
to control) for +30° perturbation was because at the end of gradual training subjects experienced

repeated exposure to +30° errors (Figure S3C, right sub-plot). The repeated +30° errors resulted in
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increased error-sensitivity for this error, which accounted for the fact that when they were tested with a
+30° perturbation, the resulting +30° errors produced faster learning than in control.

In Figure S3F we have summarized the results of the various simulations. Learning from error
increased in the paired-random perturbations, as well as in the gradual condition. As a result, the model
suggested that data attributed to structural learning could be explained by memory of errors. The
random and gradual conditions had resulted in a memory of errors for which error-sensitivity had
increased, and during testing the subjects experienced errors similar to those they had experienced
before. It was the repetition of errors, followed by subsequent revisiting of these errors that resulted in

faster learning than control.

5. Model explains savings following washout
A number of studies have considered the phenomenon of savings by conducting experiments in which
subjects are trained with a constant perturbation, and then the perturbation is removed for a long
duration, producing washout. Intriguingly, following this period of washout the re-learning of the
perturbation is faster than control. Current state-space models in which the only memory is one of
perturbations cannot account for such data(13, 14). Instead, some models have proposed that savings
arises from a hypothetical ability of the brain to recognize a context and protect the memory from
washout(34). In addition, other models have proposed that savings arises because during training
certain motor commands are reinforced by repetition and reward(30). However, neither of these two
hypotheses can explain the meta-learning results that we highlighted in Figure S2F. Let us show that the
same memory of errors that accounted for meta-learning also readily accounts for these savings
experiments.

Consider a typical scenario termed A, Null, A (ANA). In this simulation we exposed the model to 20
trials of a +1 (a.u.) perturbation, 20 trials of washout (0 perturbation) followed by 20 trials of relearning
of the +1 perturbation (Figure S2G, top). We assumed an error region of +3 consisting of 20 bases

whose initial sensitivity was 20% (o =0.25, #=0.01, a=1). We found that despite washout, and the

fact that memory of perturbation X had returned to zero, the model exhibited savings, i.e., faster rate
of learning in the second exposure to the +1 perturbation. The reason for this savings, the model
explained, was the fact that the previous errors had been experienced in a stable environment,
enhancing error-sensitivity for the errors that were again experienced in the second exposure to +1.

In a second simulation, we exposed the model to A, Null, B, Null, A (ANBNA), as shown in Fig. S2G,

lower subplot. The idea in this simulation was to illustrate that the washout of (A) produces after-
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effects, which are errors that are subsequently revisited in (B). The model made a crucial prediction:
that learning of (-1) would be faster than control, despite the fact that the model had never before been
trained in a (-1) perturbation. This example of meta-learning is explained by our model via the fact that
the after-effects following learning of (+1) produce enhanced error-sensitivity to the errors that are
again experienced in the ensuing (-1) perturbation. We will present a test of this prediction in

Experiment 4.

6. Model explains savings in a gait-adaptation experiment

Malone, Vasudevan and Bastian (11) considered an experiment with a sequence of perturbations similar
to the one that we simulated in Figure S2G. In their split-belt gait adaptation task, subjects in the ANA
group were asked to adapt to a perturbation in which the belt under the non-dominate leg was moving
twice as fast as the dominant leg for 15 minutes. Subjects in this group then returned the next day and
were exposed to a tied belt-condition (washout), followed by an additional re-learning period in the split
belt condition. Subjects in the ANANA group were exposed to an additional cycle of 15 minutes of tied
belt followed by 15 minutes of split-belt before leaving at the end of day 1. In the ANBNA group,
subjects we exposed to 15 minutes of tied belt followed by 15 minutes of adaptation to a split-belt
condition in which the non-dominant leg was moving half was fast as the dominate leg (opposite of the
‘A’ perturbation) before leaving after day 1. The results of this study are presented in Figure S2H (top).
We simulated a similar perturbation schedule in which each of the 15 minute perturbation/null sessions
was approximated by 100 trials of a perturbation with magnitude +1 (adaptation) or 0 (washout). We
distributed 25 bases throughout an error space of 5. Initial sensitivity was setat 1% (c=0.5, a=0.9,

£ =0.0005) (Figure S2H, bottom). Consistent with the experimental data, our model exhibited the

savings in ANA, and greater savings in ANANA.

According to the model, savings in ANA occurred because errors that were initially experienced
in (A) were re-experienced in the second exposure to (A). The savings in ANANA occurred because the
subject gained two prior exposures to (A) before the final test, resulting in greater increase in error-
sensitivity than one prior exposure. Finally, the savings in ANBNA occurred because in addition to the
errors in initial (A), subjects experienced similar errors upon the washout trials following (B). That s, in
ANBNA subject also had two prior exposures to the errors of the (A) perturbation, despite the fact that

they only experienced (A) once.

7. Model explains the limited range of savings
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Kojima, lwamoto and Yoshida (10) performed a saccade adaptation experiment in monkeys to quantify
savings. In this experiment, a standard intra-saccade step paradigm(35) was used to produce errors that
resulted in adaptation. After collecting 400-800 saccades during a ‘gain-up’ adaptation period (shown in
Fig. S21, top), the direction of the intra-saccade step was reversed until the animal was making saccades
with an approximate gain of 1.0. The duration of this period of counter-adaptation was approximately
the same as in the adaptation period. Finally, the monkey was exposed to a period of re-adaptation on
the gain-up perturbation, but this block contained a larger number of trials than did the initial learning
block (Figure S2I, top). The behavior showed clear evidence of savings, but the important observation
was that the faster re-learning was present only in the first 100 or so trials, after which the learning
curve returned to a rate similar to initial adaptation (red arrow, Figure S2I, top). Why was the faster
learning present for only a limited number of trials?

To simulate this experiment, we constructed a perturbation schedule consisting of 300 trials of
baseline movements, followed by adaptation to a 3.5° intra-saccade step over 750 trials. The learning of
this perturbation was then washed out using the counter perturbation over 650 trials, before being re-
exposed 1100 trials of the gain-up perturbation (Figure S2I, bottom). We distributed 50 bases in an
error-region spanning +6° with initial sensitivity of 0% (o =0.25°, #=0.00001, a =1.0). Just as in the
experimental data, our model also showed the fast initial re-learning, and then a return to slow learning
following the first 100 or so trials.

The model explained this limited range of savings by noting that the inflection point occurred near
the limit of the previously exposed errors. That is, saving was present only up until the errors that were

previously experienced -- the errors for which error-sensitivity had been up-regulated.

8. Model explains savings that was attributed to reinforced repetition

A current hypothesis posits that in some conditions, savings may be the result of reinforcement of
motor actions during the adaptation period. In their experiment, Huang, Haith, Mazzoni and Krakauer
(30) constructed 4 different perturbation schedules for a visuomotor rotation task. In the first group,
Adp Rep’, subjects made movements with veridical feedback to targets drawn from a uniform
distribution between 70° and 110°. This group then learned a constant 25° perturbation to a target
located at 95°. In another group, Adp“Rep’, subjects moved to random targets between 70° and 110°
(identical to the Adp'Rep” group), except that the perturbations were randomly selected for each target
from the uniform bounded distribution [0, 40]°. Therefore, this group adapted to the mean of the

perturbation (20°), but did not repeat actions to a particular target. In the Adp’Rep” group, subjects

17



were presented targets from a uniform distribution, but perturbations were chosen so that the correct
solution to all rotations would be to move in the 70° direction. The final group, Adp Rep’, made
repeated movements to the 70° target in the absence of a perturbation. Each group experienced 80
trials of null movements, followed by 160 training trials, 80 trials of washout, and then a final test phase
to the 25° perturbation for an additional 80 trials.

We simulated the same experiment for 50 random perturbation schedules for all groups except
Adp Rep’, which the authors found was not significantly different than the repetition control group, Adp
Rep’. We incorporated a model of movement generalization into our model which simulated the effects
of generalization of motor commands to nearby targets (identical to (36)). We distributed 50 basis

elements throughout an error-region of +50° with an initial sensitivity of 10% (o =10°, £ =0.05,

a=1.0). The authors found that only the Adp’Rep” group showed savings after a washout block. Our
model reproduced this result (Figure S2J), and explained that the reason was that the Adp’Rep” group
experienced errors that up-regulated error-sensitivity which were then re-visited during the test of
savings.

We made two assumptions in this simulation. First, that motor commands generalize to nearby
targets according to the model described by Tanaka, Sejnowski and Krakauer (36). Second, that the
weights of the error-sensitivity bases are not target specific. That is, change in error-sensitivity is a
function of error, and therefore generalizes fully to other targets. While we have not explicitly tested
either of these predictions, we note that repetition of a rewarded action alone cannot account for the

meta-learning results we have noted above.

Experiment 4

According to our model, savings and meta-learning are largely due to a memory of errors. If so,
specific manipulations of the history of errors should affect the presence or absence of savings and
meta-learning. In Exp. 4, we tested some of these critical predictions.

This experiment included n=50 subjects, 10 in each of the five groups (24.3 £+ 5.4 years old, mean +
SD, including 20 females). The subjects were naive to the purpose of the experiment. They held the
handle of the robotic manipulandum. The subject’s hand was hidden from view by an opaque horizontal
screen. They were presented with a red circle (1cm diameter), which served as the start and end point
for the trial. Subjects were asked to make a rapid shooting movement from the starting circle to a green
target circle (0.5cm diameter) located 6cm directly in front of them. They were required to pass through

the target within 150+50ms. Movements that fell outside this range were signaled by the target circle
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changing color and a low frequency auditory tone. If the subject passed through the target circle within
the time range, they were rewarded with an animation of an explosion and a point added to their score.

As subjects began moving towards the target (when the total velocity exceed 0.02m/s), we
removed visual feedback for the remainder of the outward motion. When the reach exceeded 6cm
eccentricity, a yellow dot (0.5cm diameter) was placed on the screen at that location. Visual feedback
was withheld for the duration of the trial. To aid the subject in returning to the start position, when the
hand was within 3cm of the starting circle, the position of the cursor was provided by a white dot (Imm
diameter) which blinked at 1Hz (20% duty cycle). In some trials, we manipulated the location of the
yellow dot by rotating it relative to the target using the perturbation schedules shown in Figures 4A and
S4A.

We began with a control experiment to establish the basic idea that savings is present despite
washout. In the ANA group (Fig. 4A), perturbation (A) was imposed, and then following a period of
washout (N), perturbation (A) was again presented. We expected to observe a faster rate of learning in
the second exposure to (A). According to the model, this faster learning was present because during the
initial exposure to (A) the perturbation represented a stable environment, increasing sensitivity to the
errors experienced in (A). Savings occurred because these errors were re-visited in the subsequent test
of (A). If this is indeed the case, we should be able to prevent savings by presenting (A) so that the
errors that are experienced during initial exposure are unlike the large errors that are experienced
during re-exposure to (A). We tested this prediction with the GNA group (Figure S4A). In the GNA
group, the perturbation was incremented gradually to (A), as opposed to a sudden presentation. As a
result, subjects learned to make movements typical of learning to (A), but did not experience the same
errors.

In the BNA group we attempted to produce meta-learning by exposing subjects to perturbation (B),
and then null, followed by perturbation (A) (Figure 4A). In such a case, the model predicts that the
savings occurs because the learner is exposed to errors during sudden washout of (B), i.e., the after-
effects. The interesting idea is that the after-effects themselves present a sequence of stable errors,
which increase error-sensitivity. Because these after-effect induced errors are re-experienced during
subsequent learning of (A), subjects should show meta-learning, despite the fact that they have not
previously experienced (A) before.

If the meta-learning in BNA is due to the errors that are experienced during washout of (B), then
we should be able to block it by eliminating the errors in the washout. To do so, we considered two

groups. In the B,.i;NA group we installed a brief delay between (B) and the subsequent washout period
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(Figure 4A). This wait period should reduce the after-effects in the subsequent washout trials(23, 37).
Therefore, installation of a brief wait period would remove exposure to errors, the same errors that are
the part of learning of (A). In this case, the model predicted that we should see no savings.

We followed this idea with a second group in which we eliminated the after-effects by introducing
errors gradually in BGNA group (Figure S4). In BGNA, after exposure to (B) we gradually removed the
perturbation so that there would be little or no errors that are similar to those that the subjects would
experience during exposure to (A). In summary, the model predicted savings in ANA but not GNA, meta-
learning in BNA but not B,.i:NA and BGNA.

All groups experienced a baseline block of 90 null (no perturbation) trials. Each group experienced
a training condition (90 or 120 trials) followed by 120 trials of washout (null, N), and a final phase in
which we tested adaptation to an abruptly imposed 30° counterclockwise (CCW) perturbation over 90
trials (A). The ANA group was trained on a 30° CCW rotation over the course of 90 trials (A) before
washout and testing. The BNA group experienced a 30° clockwise rotation (B), followed by washout
testing. The By.itNA group experienced the same perturbation schedule as BNA. However, subjects were
asked to wait 1-2 minutes after training of (B). This delay was expected to reduce the adapted motor
output(38, 39), resulting in reduced after-effects, i.e. smaller errors, when subjects experienced the
washout condition. The GNA group experienced a 30° CCW rotation that was gradually imposed over
120 trials. The BGNA group experienced a 30° abruptly imposed CW rotation that was then gradually
removed.

To test for savings, we fit an exponential to the performance in the test condition for each
subject
kexp(—t/7)+c (s6)
In Eq. (s6) the exponential time constant 7 has units of trials. Therefore, savings compared to the initial
learning of A by the ANA group is represented as a decrease in the value of 7.
Indeed we found that the subjects in the ANA and BNA groups learned significantly faster than
control in the test of perturbation (A), whereas the GNA, BwaitNA, and BGNA groups learned at a rate

that was no different than control.

Why does gradual perturbations sometimes produce savings, and sometimes not?
It is puzzling that in certain examples of a gradual perturbation there can be evidence of savings (Figure
S2F), whereas in other examples of a gradual perturbation savings is precluded (Figure S4A, GNA group).

Why?

20



The model explains that the critical factor is the history of errors during learning. In the
experiment shown in Figure S2F in which savings is present, the gradual perturbation produced large
errors, as shown in Figure S3C (right subplot). These residual errors at the end of the gradual
perturbation were the same errors that were experienced by the subjects when they were tested in a
+30 degree perturbation. In contrast, in the GNA group (Figure S4A), the errors at the end of the
gradual perturbation were much smaller than the errors that are experienced at the onset of the +30
degree perturbation. As a consequence of these differing history of errors, one form of gradual training

results in savings (Figure S2F), while another does not (Figure S4C).

Data collection and statistical analysis
Movement kinematics (position, velocity) and force information were recorded at 200 Hz. We were able
to measure hand position at a resolution of better than 0.1mm, and force at a resolution of 1/80N.
Statistical analyses were performed in SPSS 21 (IBM, NY). We used one-way ANOVAs (when there were
more than 2 groups) or independent two-sided t-tests (when there were 2 groups) to compare the
between-group differences at a single point in the experiment. We used paired t-tests to compare the
results of two consecutive probes.

The standard statistical test used in adaptation studies is repeated-measure ANOVA (RM-ANOVA).
In RM-ANOVA, the assumption is that the between subject variance of the measured variable is constant
across measurements. However, in motor adaptation studies, the across-subject variance of the
measured variable often changes as the experiment progresses, violating a primary assumption of a
repeated measures ANOVA. To address this problem, we used the general linear model feature of SPSS
(GLM-ANOVA) to test for main effects of trial, group, and group by trial interaction. Our analysis
assumed a heterogeneous autoregressive correlation structure of the variance matrix, allowing for
between-subject variance to change across repeated measurements.

In cases where there was a significant main effect of group or a group by trial interaction, we
performed a series of post-hoc t-tests to determine which groups were significantly different. Post-hoc
tests were corrected for multiple comparisons using the Dunn-Sidak approach. All figures and statistics

are reported as £SEM, unless otherwise noted.
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Figure S1. Comparison of model and experimental results for Exp. 3. A. Experimental results. Learning
from error as a function of error size, measured across the experiment. Errors were binned across error
sizes with a bin width of 1N. Black line represents the best-fit line, corresponding to a constant error-
sensitivity across error magnitudes, our estimate of an unbiased learner. Error bars are mean+SEM. B.
Difference between the measured learning from error and the unbiased learning curve. Predicted curves

show the change in error sensitivity as predicted by the model, binned across error-magnitudes. Error
bars represent mean+SEM across subjects.
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Figure S2. Model accounts for a large body of experimental results. A. Mean adaptation to a series of
discrete force-pulse perturbations. Data reported by Fine and Thoroughman (29) (black bars,
mean+SEM) compared to model (red, mean+SEM). Model SE M is obscured by the line. B. Mean
adaptation during a visual displacement task reported by Wei and Kérding (5) (black bars) compared to
model (red). C. Adaptation to discrete force-field perturbations during a reaching task. Volunteers
experienced one of three environments in which perturbations were drawn from a distribution that was
either unbiased, weakly biased (green x’s) or strongly biased (blue x’s) (top) (40). Model results shown in
lower panel. D-E. Experimental results from a visuomotor rotation task (33). Participants experienced
environments with statistics similar to sub-figure C over three separate days (top). Model results for the
three environments in the order strong, weak, unbiased are shown in D (bottom); environments in the
order unbiased, weak, strong are shown in E. F. Example of meta-learning (also termed structural
learning). Results from a visuomotor rotation experiment (16). After exposure to a random or gradual
environment (left), performance was assessed during learning of a [+30, -30, +30]° perturbation
sequence (right). G. Examples of savings. Model results (red) in a perturbation schedule consisting of
training (+1), washout (0), re-learning (+1) (grey, top). Model results for a schedule which includes
learning of (-1) shows faster learning than control in (-1), as well as faster relearning in (+1) (bottom). H.
Split-belt gait adaptation results(11) in which subjects were exposed to a similar sequence of
perturbations as in G. Model results for similar perturbation schedule (bottom). I. Saccade adaptation
experiment(10) (top) and model (bottom). Individual saccades are shown as black dots; black line shows
150 trial moving average. The red arrow denotes the end of facilitated learning. J. Example of data
attributed to reinforced repetition. Model results for a paradigm similar to (30). Savings is present in
the Adp'Rep” group. In all plots, shaded error regions are model mean + SEM, across randomly
generated perturbation sequences.
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Fig. S3. The model was simulated on each perturbation distribution in the various experiments and then
the quantity E[sign(e(")e("ﬂ) )] was plotted as a function of perturbation magnitude in that

distribution. A. Simulation results for the perturbation distribution in Fine and Thoroughman (29). In the
right subplot the baseline learning curve is shown by the black line and he final learning curve is shown
by the red line. B. Simulation results for the perturbation distributions in Fine and Thoroughman (40). C.
Simulation results for the random perturbation sequence in Turnham, Braun and Wolpert (16) labeled as
“paired” random. Additional results for a schedule in which perturbations are random on each trial
rather than each pair is labeled as “single” random. Mean errors from the gradual training in (16),
showing sustained errors of approximately 30°, similar to those tested at the end of the experiment. D.
Simulation results for the “single” random perturbation. The “single” random schedule does not show
savings whereas the “paired” random schedule from (16) shows savings (Fig. S2F). F. Learning from error
as a function of error magnitudes for all groups from the simulation of (16). Learning from error
increases for the gradual and paired-random perturbations, but not single-random perturbations. In all
plots, shaded error regions are mean * SEM, across randomly generated perturbation sequences.
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Figure S4. Additional groups in Experiment 4: saving and meta-learning occur only when previously
experienced errors are re-visited. A. Perturbation protocols for groups GNA and BGNA. B. Performance
during exposure to +30° perturbation. Exponential fits are shown for the group data. Performances of
the GNA and BGNA are not different than control, demonstrating that these perturbation protocols
blocked savings. C. Exponential time constants are not different than control. A lower time constant
indicates faster learning. D. Time course of adaptation in the GNA group. Note that the magnitude of the
error at the end of gradual learning is significantly smaller than 30°. Data are mean + SEM across

subjects.
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