Deep Belief Network
Brief History

• Perceptron (Classification)
 – Single perception (McCulloch W. & Pitts W., 1943)
 – Multi-layer Perceptron (Rosenblatt F., 1958)

• Artificial Neural Network (State Machine)

• Deep Learning (Reconstruction)
 – Layered learning (Ivakhnenko and Lapa, 1965)
 – (Restricted) Boltzmann Machine (Hinton, 1986)
 – Sigmoid belief network (Neal, 1991)
Hopfield Network

• New State, local field
 \[h_i = \sum_i w_i x_i \]

• Output formula
 \[o = \begin{cases}
 1 & \sum_i w_i x_i \geq 0 \\
 0 & \sum_i w_i x_i < 0
\end{cases} \]

• Maintain its output until updated
• Constrains
 – Symmetrical
 – No self connection
Hopfield – Energy

• Local energy

\[E_i = -\frac{1}{2} h_i x_i \]

\[E_{all} = \sum E_i = \sum_i -\frac{1}{2} h_i x_i = -\frac{1}{2} \sum_{i,j} w_{ij} x_i x_j \]

• The energy of the network can only decrease or stay at the same, if an update causes a neuron to change sign, then the energy will decrease

• Hebb’s rule for weight updates

\[w_{ij} = \frac{1}{N} x_i x_j \]
Boltzmann Machine

- A stochastic network of symmetrically coupled binary units \{0,1\}
- Activation energy = hi
- Use labeled data to train the system hidden variables
- Probability of activation \(p_i = f(h_i) = \frac{1}{1 + \exp(h_i)} \)
- \(E_{ij_old} = p_i \times p_j \)
- After the system is stable, recalculate the visible variables
- \(E_{ij_new} = p_i \times p_j \)
- Weight update
 \(W_{ij} = w_{ij} + L \times (E_{ij_old} - E_{ij_new}) \)
- Total energy
 \[
 E = -\frac{1}{2} (v^T L v + h^T J h + v^T W h)
 \]
- Redo the whole process until the total energy converges
Restricted Boltzmann Machine

• There is no visible-visible and hidden-hidden connections

• Contrastive divergence
 – $L^*(E_{ij_old}-E_{ij_new})$ can get the machine diverge faster
 – Gradient descent in nature
Layer-wise Pre-training and BP

• Each layer of RBM is capable for unsupervised learning
• It can also be conducted in supervised manner
• One (big) assumption is that each layer has functional locality
• After all layers are trained, BP to fine-tune the overall weight
 – Does not change the discovery structure, scaling effect
Layers (why?)

• Assuming input has hierarchical structure, the hierarchical design is more efficient for intermediate re-use

• Computationally feasible for layer computation
Sigmoid Belief Network

• Universal approximator
• \(P_i = f(W^X) = 1/(1+\exp(h_i+b_i)) \)
• Why use this if there is carried away problem?
The process

• Fit W1 of first layer RBM
• Freeze W1 and use sample h1 to feed h2
• Continue until reach top level
• Do a few iteration of sampling in top level
• Carry a top-down stochastic pass
Further Resources

- http://deeplearning4j.org/restrictedboltzmannmachine.html
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- http://deeplearning.net/tutorial/logreg.html
- And there are many many more