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Three fundamental levels of analysis necessary to understand how the
brain realizes a function such as flexible sensorimotor integr. (SMI)

[D. Marr, 1945-80]

1. Computational

Level -

2. Algorithmic
Level -

3. Implementational

Level -

Why does the brain
care about a specific
problem?

What processes and
neural code is used
to solve it?

How do Neurons and
Networks realize the
solution.



brain realizes a function such as flexible sensorimotor integr. (SMI)
[D. Marr,1945-80]
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« Networks of cells
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Prelude:

Coding of Information in Neuronal Networks is linked
to Spike Initiation Dynamics of Single Cells and
Synchrony Transfer.
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Neural networks are more than the sum of their parts, but the properties of those parts are nonetheless impor-
tant. For instance, neuronal properties affect the degree to which neurons receiving common input will spike
synchronously, and whether that synchrony will propagate through the network. Stimulus-evoked synchrony
can help or hinder network coding depending on the type of code. In this Perspective, we describe how spike
initiation dynamics influence neuronal input-output properties, how those properties affect synchronization,
and how synchronization affects network coding. We propose that synchronous and asynchronous spiking
can be used to multiplex temporal (synchrony) and rate coding and discuss how pyramidal neurons would be
well suited for that task.

- Quote: “Spike initiation dynamics regulate synchrony transfer
properties, and synchrony transfer properties regulate network
coding strategies;

... therefore, spike initiation dynamics
regulate network coding strategies.”



- Pyramidal Cells are in different operating modes during low
and high conductance states.
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- Pyramidal Cells are in different operating modes during low
and high conductance states.
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 Neuronal Coding depends jointly on the Operating Mode
of Pyramidal Cells and the Input Properties
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- Neuronal Coding depends jointly on the Operating Mode
of Pyramidal Cells and the Input Properties

- The Operating Modeis  [[E:] coincidence detection

set by the Net-Slow
Current at Peri-Threshold weak inward

(V). Slow current I ———— . .
weak outwarg T ———

compete with fast strong outward

currents during high

conductance states ¢ ¢
Net-Inward Current is Net-Outward Current
depolarizing (and helps is hyperpolarizing (and
sustaining the competes with fast,
depolarization caused by depolarizing inward
external inputs) current)
... this encourages ... this discourages

temporal summation summation



- Pyramidal Cells are in different operating modes during low and

high conductance states.

- The Operating Mode is  [[Ge[ 1
set by the Net-Slow

Current at Peri-Threshold weak inward
(V). Slow current
compete with fast
currents during high
conductance states

cooperation

reaches threshold
With asSIStanCe sesessssprrssrnnns threshold
of inward current

Synaptic
Processing voltage

Time Window
of Input Integration

Spike-Triggered
Membrane __/\

Potential

coincidence detection

competition

weak outwara =]

strong outward

competition



- Pyramidal Cells are in different operating modes during low and
high conductance states.
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- Pyramidal Cells are in different operating modes during low and
high conductance states.
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- Neuronal Coding depends jointly on the Operating Mode
of Cells and InpytPranerties
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« Neurons in ‘Hybrid Mode’ can be sensitive to synchronous and
asynchronous input - at the same time - They effectively “multiplex”.
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Neural networks are more than the sum of their parts, but the properties of those parts are nonetheless impor-
tant. For instance, neuronal properties affect the degree to which neurons receiving common input will spike
synchronously, and whether that synchrony will propagate through the network. Stimulus-evoked synchrony
can help or hinder network coding depending on the type of code. In this Perspective, we describe how spike
initiation dynamics influence neuronal input-output properties, how those properties affect synchronization,
and how synchronization affects network coding. We propose that synchronous and asynchronous spiking
can be used to multiplex temporal (synchrony) and rate coding and discuss how pyramidal neurons would be
well suited for that task.
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