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Part 1: Advanced fMRI analyses
For our project we aimed at learning three new advanced fMRI analysis techniques that go beyond the classic univariate analyses. Specifically, we employed multivoxel pattern analysis (MVPA) correlation approach, MVPA classifier approach and independent component analysis (ICA) to different data sets. For the MVPA we compared the correlation vs. classifier approach using fMRI data collected by Fabbri et al. at Western University, while for the ICA we reanalyzed resting-state fMRI data (Vahdat et al., 2011) from the DREAM database.

Method 1: Correlation Multivoxel Pattern Analysis (MVPA)
MVPA considers responses of voxels jointly rather than independently, as in the standard univariate analyses. The first method we applied is the correlation MVPA approach that measures how the brain represents specific features of a task. In our experiment, regions that represent a particular feature (e.g. target location) should show stronger correlation between patterns of activity during the same condition in different runs (e.g. reaching toward the same target in odd vs. even runs) in comparison to patterns of activity elicited by different conditions (e.g. reaching toward different targets in odd vs. even runs). Data were acquired with a 3T scanner at Western University (Fabbri et al.) on one right-hand participant. The experiment consisted of 8 experimental runs. The participant had to reach toward 4 targets arranged on a square. There were four combinations of target locations and movement directions: same target-same directions, same target-different directions; different target-different directions, different target-same directions. Data from left superior parietal lobe (SPL LH) showed stronger correlations between trials where the target location was the same across odd en even runs, while correlation dropped for movements in the same direction but towards different target (see Figure 1A). Although these results are very preliminary, there is a trend indicating that SPL represents target location better than direction of movement.   
Method 2: Classifier Multivoxel Pattern Analysis (MVPA)
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Results from the two MVPA methods. 
A) The bars show that there was higher correlation when target locations, rather than movement directions, were the same. B) The decoding accuracy was significantly accurate for two out of the four pairs of targets
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)This MVPA approach is based on an estimate of how much the brain activity elicited by different categories can be distinguished by an classifier. We trained a support vector machine (SVM) linear classifier with trials from all experimental runs, except for one that we use for the test. We tested the decoding accuracy for pairs of conditions in which the target location, but not the movement direction, differed. Decoding accuracy above chance would indicate that SPL decodes target location. Figure 1A shows that the decoding accuracy was above chance for two out of four pairs of target locations (see Figure 1B): classification was above chance for two out of four pairs of targets. These preliminary results suggest that SPL represents target location more than movement direction, but more data need to be collected to generalize these results to the population level. 








Method 3: Independent component analysis (ICA)
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. Changes to the right fronto-parietal resting-state network following force field adaptation.
)The third advanced fMRI analysis technique that we performed for our project was independent component analysis (ICA). We applied this exploratory data-driven approach to resting-state fMRI data from a recent study by Vahdat and colleagues (2011) in order to assess how the spatial and temporal structure of various resting-state networks is altered by force field adaptation. We performed ICA on all subjects’ resting-state scans on day one (baseline) and for day 2 (post-learning). Resting-state networks were identified in each set of components and we assessed spatial and temporal changes to these networks following force field adaptation. Here we demonstrate that, following force field adaptation, the sensorimotor resting-state network undergoes topographical changes (i.e. bilateral MI, SMA and SPL ‘leaves’ the network) as well as temporal changes (i.e. increased functional connectivity between SI and SII) (Figure 2).  Likewise, the right fronto-parietal resting-state network also undergoes topographical changes (i.e. left IPL and right SPL join the network) and temporal changes (i.e. increased coherence within the right SPL) after force field adaptation (Figure 3).  These functional changes to resting-state networks following force field adaptation provide insight into which areas are the brain are involved in this type of motor learning. 
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 Changes to 
the 
sensorimotor resting-state network following force field adaptation.
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Part 2: Title: Teasing out the sensory vs. motor contributions for stroke survivors’ motor behavior using a state state model and Kalman filter
The objective of this work was to tease out the contribution of motor and sensory noises in stroke survivors’ poor motor performance, and to predict the outcome of interventions targeting either motor or sensory systems for individual patients.  To do so, we developed a state model with Kalman filter to describe subjects’ behavior of directing their precision pinch force to the direction normal to the grip surface (state = force direction (ratio of shear force to normal force) and its derivative over time, affected by motor noise; observation = perceived state with sensory noise). The motor and sensory noises (variance) that result in a good model fit (as shown in Figure 4) were determined. The motor variance was approximately 6,000 times higher for a stroke patient (n=1) than a control subject (n=1), while the sensory variance was 1,500 times higher for the stroke than the control subject. When vibrotactile stimulation was applied to the stroke patient’s hand, supposedly to enhance tactile sensation, the sensory variance was reduced by 30%. This work provides the potential to predict a patient-specific outcome of a rehabilitation intervention targeting sensory vs. motor systems. 
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Figure 4. The model (segmented blue line) predicted the experimentally measured force direction (solid black line) quite well for both control and stroke subjects. 
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