

Expectation Maximization

Brandon Caie and Jonny Coutinho

Intro: Expectation Maximization Algorithm

• EM algorithm provides a general approach to learning in presence of unobserved variables.

- In many practical learning settings, only a subset of relevant features or variables might be observable.
 - Eg: Hidden Markov, Bayesian Belief Networks

Simple Example: Coin Flipping

- Suppose you have 2 coins, A and B, each with a certain bias of landing heads, θ_A , θ_B .
- Given data sets $X_A = \{x_{1,A}, \dots, x_{m_A,A}\}$ and $X_B = \{x_{1,B}, \dots, x_{m_B,B}\}$ Where $x_{i,j} = \{ \begin{cases} 1 \text{ ; } if \text{ heads} \\ 0 \text{ ; } otherwise \end{cases}$

• No hidden variables – easy solution. $\theta_j = \frac{1}{m_j} \sum_{i=1}^{m_j} x_{i,j}$; sample mean

Simplified MLE

нтттннтнтн				
нннтнннн				
нтннннтнн				
нтнтттннтт				
тнннтнннтн				
-				
5 sets, 10 tosses per set				

Coin A	Coin B	
	5 HGoal: 0	determine coin
9 H, 1 T	_	eters without knowing entity of each data set's
8 H, 2 T	coin.	â 9 o 15
		$\hat{\theta} = \frac{9}{100} = 0.45$ on: Expectation- nization
7 H, 3 T	ΠαλΠ	iizatioii
24 H, 6 T	9 H, 11 T	

Coin Flip With hidden variables

• What if you were given the same dataset of coin flip results, but no coin identities defining the datasets?

Here: $X = \{x_1, ... x_m\}$; the observed variable

$$Z = \begin{cases} Z_{1,1} & \dots & Z_{m,1} \\ \dots & Z_{i,j} & \dots \\ Z_{1,k} & \dots & Z_{m,k} \end{cases} \quad \text{where } z_{i,j} = \begin{cases} 1 \text{ ; if } x_i \text{ is from } j^{th} \text{ coin} \\ 0 \text{; otherwise} \end{cases}$$

But Z is not known. (Ie: 'hidden' / 'latent' variable)

EM Algorithm

- 0) Initialize some arbitrary hypothesis of parameter values (θ): $\theta = \{\theta_1, ..., \theta_k\}$ coin flip example: $\theta = \{\theta_A, \theta_B\} = \{0.6, 0.5\}$
- 1) Expectation (E-step)

$$E[z_{i,j}] = \frac{p(x = x_i | \theta = \theta_j)}{\sum_{n=1}^k p(x = x_i | \theta = \theta_n)}$$

2) Maximization (M-step)

$$\theta_j = \frac{\sum_{i=1}^m E[z_{i,j}] x_i}{\sum_{i=1}^m E[z_{i,j}]}$$

If $z_{i,i}$ is known:

$$\theta_j = \frac{\sum_{i=1}^{m_j} x_i}{m_j}$$

EM- Coin Flip example

- Initialize θ_A and θ_B to chosen value
 - Ex: θ_A =0.6, θ_B = 0.5
 - Compute a probability distribution of possible completions of the data using current parameters

EM- Coin Flip example

Set 1 HTTTHHTHTH

- What is the probability that I observe 5 heads and 5 tails in coin A and B given the initializing parameters θ_A =0.6, θ_B = 0.5?
- Compute likelihood of set 1 coming from coin A or B using the binomial distribution with mean probability θ on n trials with k successes

$$p(k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

- Likelihood of "A"=0.00079
- Likelihood of "B"=0.00097
- Normalize to get probabilities \rightarrow A=0.45, B=0.55

The E-step

 $\hat{\theta}_{A}^{(0)} = 0.60$

 $\hat{\theta}_{B}^{(0)} = 0.50$

0.65 x

Coin A	Coin B
≈ 2.2 H, 2.2 T	≈ 2.8 H, 2.8 T
≈ 7.2 H, 0.8 T	≈ 1.8 H, 0.2 T
≈ 5.9 H, 1.5 T	≈ 2.1 H, 0.5 T
≈ 1.4 H, 2.1 T	≈ 2.6 H, 3.9 T
≈ 4.5 H, 1.9 T	≈ 2.5 H, 1.1 T
≈ 21.3 H, 8.6 T	≈ 11.7 H, 8.4 T

The M-step

Coin A	Coin B
≈ 2.2 H, 2.2 T	≈ 2.8 H, 2.8 T
≈ 7.2 H, 0.8 T	≈ 1.8 H, 0.2 T
≈ 5.9 H, 1.5 T	≈ 2.1 H, 0.5 T
≈ 1.4 H, 2.1 T	≈ 2.6 H, 3.9 T
≈ 4.5 H, 1.9 T	≈ 2.5 H, 1.1 T
≈ 21.3 H, 8.6 T	≈ 11.7 H, 8.4 T

$$\hat{\theta}_{A}^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_{\rm B}^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$

Summary

- 1. Choose starting parameters
- 2. Estimate probability using these parameters that each data set (x_i) came from j^{th} coin $(E[z_{i,j}])$
- 3. Use these probability values ($E[z_{i,j}]$) as weights on each data point when computing a new θ_j to describe each distribution
- 4. Summate these expected values, use maximum likelihood estimation to derive new parameter values to repeat process

Gaussian Mixture Models

• When data is continuous, can be described by Normal Distributions

Gaussian Mixture Models

• Cluster data as Gaussians, with parameters: $(\mu_j, \sigma_j^2, \pi_j)$

$$p(z = j) = \pi_j$$

$$p(x|z = j) = N(x; \mu_i, \sigma_i^2)$$

EM algorithm in Gaussian Mixtures

Step 0) Initialize
$$\theta = \begin{cases} \alpha_1, ..., \alpha_k \\ \sigma_1^2, ..., \sigma_k^2 \\ \pi_1, ..., \pi_k \end{cases}$$
 (assuming k clusters)

Step 1) Expectation: compute
$$r_{i,j}$$
 for each x_i

$$r_{i,j} = \frac{\pi_{i,j} \ p(x|z=j)}{\sum_{n=1}^{k} \pi_{i,n} \ p(x|z=n)}$$

EM algorithm for Gaussian Mixture

Step 2) Maximization:

$$m_{j} = \sum_{i} r_{i,j}$$

$$\pi_{j} = \frac{m_{j}^{i}}{m}$$

$$\mu_{j} = \frac{1}{m_{j}} \sum_{i} r_{i,j} x_{i}$$

$$\sigma_{j}^{2} = \frac{1}{m_{j}} \sum_{i} r_{i,j} (x_{i} - \mu_{j})^{2}$$

Example of EM in Gaussian Mixtures

Overfitting through convergence

Initializing Parameters

- Hidden variables and incomplete data lead to more complex likelihood functions w/ many local optima
- Since EM only solves for a single local optima, choosing a good initial parameter estimation is critical
- Strategies to improve initialization
 - Multiple random restarts
 - Use prior knowledge
 - -Output of a simpler, though less robust algorithm

Resources

- Matlab EM Algorithm
- Tom Mitchell- Machine Learning: Chapter 6 (on lab wiki)
- EM Algorithm Derivation, Convergence, Hidden Markov and GMM Applications
- Nature Review Article