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Figure S1: Robustness of filter estimation

A) For the simulated ON-OFF RGC in Figs. 1 and 3, the likelihood function with respect to the NIM stimulus filters shows
only a single global optimum (up to an interchange of the filters) over a broad range of parameter space. To illustrate this, 100
iterations of the optimization were performed with random initializations of the filters, and in all cases the correct filters were
identified. The initial filters are projected onto the true ON and OFF filters (inset), and are plotted along with the resulting
optimized filter projections. Each iteration of the optimization is thus represented by a pair of optimized filters (large blue
and red circles), along with a pair of initial filters (small blue and red circles, color coded based on the resulting filter
estimates). B) For the example MLd neuron in Fig. 5, we found two distinct local maxima when optimizing the NIM stimulus
filters, corresponding to the two clusters of the maximized log-likelihood across many repetitions of optimizing the filters
with random initial conditions. The global optimum (right) corresponds to the set of filters shown in Fig. 5, while a locally
optimum solution (left) corresponds to the excitatory filter matching the STA. C) For the simulated V1 neuron shown in Fig.
6A, optimization of the NIM is again well-behaved. In this case there are potentially several spurious local maxima,
illustrated by the distribution of maximized log-likelihood values. However, these local maxima correspond to models that
are very similar to the identified global maximum, as shown by the similar log-likelihood values, as well as the similarity of
the identified filters (example models shown at left and right).
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Figure S2: NIM parameter optimization scales approximately linearly

A) The time required to estimate the filters (black) and upstream nonlinearities (red) scales linearly as a function of data
duration for the ON-OFF RGC simulation (with two subunits) shown in Figs. 1 and 3. The error bars show +/- 1 standard
deviation around the mean across multiple repetitions of the parameter estimation (with random initialization). Estimation
was performed on a machine running Mac OS X 10.6 with two 2.26 GHz quad-core Intel Xeon processors and 16 GB of
RAM. B) To measure parameter estimation time as a function of the number of stimulus dimensions, we simulated a V1
neuron (similar to that shown in Fig. 6A) receiving two rectified inputs (data duration of 10° time samples). We then varied
the number of time lags used to represent the stimulus and measured the time required for parameter estimation. Estimation
of the stimulus filters scales roughly linearly with the number of stimulus dimensions, while estimation of the upstream
nonlinearities is largely independent of the number of stimulus dimensions. C) Parameter estimation time for the filters and
upstream nonlinearities also scales approximately linearly as a function of the number of subunits. Here we again used a
simulated V1 neuron similar to that shown in Fig. 6A, although with 10 rectified inputs (200 stimulus dimensions and data
duration of 10° time samples). Note that the additional step of estimating the upstream nonlinearities adds relatively little to
the overall parameter estimation time, especially for more complex models.
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Figure S3: Comparison of the NIM and GQM for the example LGN neuron

The linear model (A), NIM (B), and GQM (C) fit to the example LGN neuron from Fig. 4 are shown for comparison. Here
(A) and (B) are reproduced from Figs. 4A and B respectively. Note that the spatial and temporal profiles of the linear and
squared (suppressive) GQM filters are largely similar to the (rectified) excitatory and suppressive filters identified by the
NIM. Despite the similarity of the identified filters, however, the NIM and GQM imply a different picture of the neuron’s
stimulus processing, as illustrated in Fig. S4.
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Figure S4: Different predictions of the GQM and NIM with excitation and delayed suppression
(caption on next page)



The GLM (A), NIM (B), and GQM (C) fit to the example MLd neuron in Fig. 5 (A and B here are reproduced from Figs. 5A
and B). The NIM and GQM identify similar excitatory and suppressive filters, but the GQM assumes linear and squared
upstream nonlinearities for these inputs respectively, while the NIM infers the rectified form of these functions. Despite the
similarities in the identified filters, the different upstream nonlinearities in these models imply distinct interactions between
the excitatory and suppressive inputs. To illustrate this, we consider how these different models process two stimuli in (D)
and (E), which highlight these differences. D) First, we consider a negative impulse (left) presented at the preferred frequency
(horizontal black lines in A-C). The outputs of the excitatory (blue) and suppressive (red) subunits are shown for the linear
model (top), GQM (middle), and NIM (bottom). The combined outputs of these subunits are then transformed by the spiking
nonlinearity into the corresponding predicted firing rates at right. In this case, only the linear model responds to the stimulus,
since the GQM is strongly suppressed, and the NIM is largely unaffected due to the rectification of the negatively driven
inputs. E) Similar to (D), we consider a biphasic stimulus (left), also presented at the neuron’s preferred frequency. This
stimulus drives different responses in all three models. The response predicted by the GQM is by far the weakest because the
(squared) suppression driven by the initial negative phase of the stimulus coincides with the excitation driven by the positive
phase of the stimulus, causing them to partially cancel each other out. For the NIM, the negative phase of the stimulus does
not drive the suppression, due to rectification, and the excitation is able to elicit a much larger response. The response
predicted by the linear model is even larger since this is essentially the optimal stimulus for driving the linear filter. This
suggests targeted stimuli that might be able to distinguish the computations being performed by MLd neurons.
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Figure S5: Selecting the number of model subunits (caption on next page)



A) To illustrate the robustness of NIM parameter estimation to specification of the precise number of subunits, we first
consider the simulated V1 neuron from Fig. 6A, which was constructed from six rectified excitatory subunits. Fitting a
sequence of NIMs (blue) and GQMs (red) with increasing numbers of (excitatory) subunits reveals that the log-likelihood
(evaluated on a simulated cross-validation data set) initially improves dramatically, but becomes nearly saturated for models
with four or more subunits. Here we plot log-likelihood relative to that of the best model, and error bars show one std. dev.
about the mean. While it is possible in this case to identify the true number of underlying subunits (six) from the cross-
validated model performance of the NIM, the model performance is relatively insensitive to specification of the precise
number of subunits. B) Stimulus filters from example NIM fits from (A), with four, six, and eight filters. Note that the
identified filters are nearly identical across these different models, and when more than the true number (six) of subunits are
included in the model, sparseness regularization on the filters tends to drive the extra filters to zero, yielding effectively
identical models. C) To illustrate the procedure of selecting the number of model subunits with real data, we consider fitting a
series of models to the example MLd neuron from Fig. 5. In this case there are both excitatory and suppressive stimulus
dimensions, so we independently vary the number of each. Average (+/- 1 std. error) cross-validated model performance is
depicted for each subunit composition for models with up to three subunits (the color indicates the number of suppressive
subunits). While we do not have sufficient data to identify statistically significant differences, a two-filter model with one
excitatory and one suppressive filter appears to achieve optimal performance. D) Three example NIM fits for one, two, and
three-filter models corresponding to the Roman numerals in (C). (i) Model with one excitatory subunit. (ii) Model with one
excitatory and one suppressive subunit. (iii) Model with two excitatory and one suppressive subunits. Note that the excitatory
and suppressive filters from the two-filter model are also present in the three-filter model, and that the addition of a second
excitatory subunit (resembling the linear filter) provides little, if any, additional predictive power. E) Similar to (C-D), we
consider fitting models with different numbers of excitatory and suppressive subunits to the example macaque V1 neuron
from Fig. 7. In this case, the neuron is selective to a large number of stimulus dimensions (Fig. 7A), and thus there are a large
number of possible excitatory/suppressive subunit compositions to consider. To greatly speed this process (and illustrate a
procedure for rapid model characterization), we fit the NIM filters in a reduced stimulus subspace (see Methods) that is
identified by a GQM with four excitatory and six suppressive dimensions. The number of subunits in the GQM was selected
in order to ensure that all filters with discernible structure were included. The figure then shows the average (+/- 1 std. error)
cross-validated log-likelihood (relative to a model with two excitatory and one suppressive filters) for NIMs with varying
numbers of excitatory and suppressive subunits. Note that the model performance increases initially, but tends to saturate for
models with more than about four excitatory and four suppressive subunits. For comparison, the cross-validated log-
likelihood of the GQM (green line) — which established the stimulus subspace — is below most of the NIM solutions. While
fitting the stimulus filters in the full stimulus space provides slightly different (though qualitatively very similar) results,
limiting the NIM to the subspace provides a tractable way to fully explore the nonlinear structure of computation, and can
then serve as an initial guess for a more computationally-intensive search in the full stimulus space. F-G) Two example NIM
fits from those depicted in (E). A NIM with four excitatory and four suppressive subunits (F) is compared to a NIM with six
excitatory and six suppressive subunits (G), the latter providing only a slight improvement relative to the former. Both
models provide a qualitatively similar depiction of the neuron’s stimulus processing, identifying largely similar sets of
excitatory and suppressive inputs.
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Figure S6: Selection of regularization parameters

To illustrate how the performance of our models depends on selection of the regularization hyperparameters, we fit a series of
models to the example V1 neuron from Fig. 8. For this example neuron regularization of the stimulus filters is particularly
important, given the large number (3200) of parameters associated with each filter. As described in the Methods section, we
use both smoothness (L2 penalty on the spatial Laplacian) and sparseness regularization on the filters, each of which is
governed by a hyperparameter. While in principle we could independently optimize these regularization parameters for each
filter, we consider here only the case where all filters are subject to the same regularization penalties. Further, we consider
optimizing the smoothness and sparseness penalties independently, which will not in general identify the optimal set of
hyperparameters.

A) We first set the sparseness regularization penalty to zero, and systematically vary the strength of the smoothness penalty.
The cross-validated log-likelihood is plotted for the NIM (blue trace) and GQM (red trace), showing that the NIM
outperforms the GQM over a range of smoothness regularization strengths. B-D) Representative filters are shown from
model fits at several regularization strengths, as indicated by the black circles in (A). The filters are depicted as the ‘best-time
slice’ (BTS) and the ‘space-time projection’ (STP), as in Fig. 8. E) Similar to (A), we next consider varying the strength of
sparseness regularization given fixed values for the smoothness regularization (set to the value indicated by the vertical
dashed line in A). Note that the performance of the NIM again remains significantly better than the GQM across a range of
regularization strengths. F-H) Representative filters at several sparseness regularization strengths, as indicated in (E). Note
that (F) is identical to (C), reproduced for ease of comparison.



