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Eye-Position Signals in the Dorsal Visual System Are
Accurate and Precise on Short Timescales
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Eye-position signals (EPS) are found throughout the primate visual system and are thought to provide a mechanism for representing
spatial locations in a manner that is robust to changes in eye position. It remains unknown, however, whether cortical EPS (also known
as “gain fields”) have the necessary spatial and temporal characteristics to fulfill their purported computational roles. To quantify these
EPS, we combined single-unit recordings in four dorsal visual areas of behaving rhesus macaques (lateral intraparietal area, ventral
intraparietal area, middle temporal area, and the medial superior temporal area) with likelihood-based population-decoding techniques.
The decoders used knowledge of spiking statistics to estimate eye position during fixation from a set of observed spike counts across
neurons. Importantly, these samples were short in duration (100 ms) and from individual trials to mimic the real-time estimation
problem faced by the brain. The results suggest that cortical EPS provide an accurate and precise representation of eye position, albeit
with unequal signal fidelity across brain areas and a modest underestimation of eye eccentricity. The underestimation of eye eccentricity
predicted a pattern of mislocalization that matches the errors made by human observers. In addition, we found that eccentric eye
positions were associated with enhanced precision relative to the primary eye position. This predicts that positions in visual space should
be represented more reliably during eccentric gaze than while looking straight ahead. Together, these results suggest that cortical
eye-position signals provide a useable head-centered representation of visual space on timescales that are compatible with the duration

of a typical ocular fixation.

Introduction

Many visual areas of the primate cortex contain nonvisual signals
related to the positions of the eyes in the orbit (for review, see
Salinas and Sejnowski, 2001). In single neurons, these eye-
position signals consist of a modulation of mean firing rate with
changes in fixation position, typically without modifying other
tuning properties (Andersen and Mountcastle, 1983). This sensi-
tivity to eye position has been termed a “gain field” and an “eye-
position field” (EPF) in different experimental contexts.

The functional contribution of EPFs remains controversial
(Kaplan and Snyder, 2012). The prevailing view is that they pro-
vide the crucial link between the ever-changing positions of ob-
jects on the retina (due to eye movements) and their true
positions in the world (Andersen and Mountcastle, 1983; Zipser
and Andersen, 1988; Bremmer et al., 1998). Accordingly, EPFs
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have been ascribed important roles in perception and action
planning, including sensorimotor transformations, multisensory
integration, and the maintenance of visual stability (for review,
see Salinas and Sejnowski, 2001). Some investigators, however,
suggest that EPFs play no direct role in behavior and serve only as
a slow feedback signal to calibrate oculomotor efference copy
(Wang et al., 2007; Xu et al., 2012).

A key contributor to this controversy is that until recently,
little was known about whether EPFs are actually capable of
keeping track of the eye during normal behavior. There are
two critical criteria in this regard. First, EPFs would need to be
updated fast enough to represent each fixation within the time
of a typical intrasaccadic interval. To this end, we recently
showed that the updating of EPFs begins before the onset of
saccades but remains incomplete until nearly 200 ms after the
onset of the new fixation (Morris et al., 2012; a similar delay
was reported by Xu et al., 2012). This transient misrepresen-
tation of eye position predicted localization errors that
matched those observed in humans, suggesting that EPFs are
updated as rapidly as is visual perception.

Second, the eye-position information that is available within a
fixation must be sufficiently accurate and reliable to be used to
compute object locations. To our knowledge, only one study has
quantified EPF population codes for eye position (Bremmer et
al., 1998). There, however, data were averaged over long intervals
(1 s) and over trials, thus obscuring the effects of spike-count
variability on the precision of population codes.
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Figure 1. Schematic of the behavioral task. The animal fixated one of five initial positions
(black circles) for 1000 ms and then a target position (gray circles) for a further 1000 ms. Targets
were located either 10° rightward or 10° downward with respect to the initial position, leading
to 13 unique fixation positions. Spikes collected during the fixation intervals were used to
determine the presence and properties of neural EPFs.

To address this issue, we recorded single-unit activity in four
dorsal visual areas of the macaque (lateral intraparietal, LIP; ven-
tral intraparietal, VIP; middle temporal, MT; and the medial su-
perior temporal, MST) during an oculomotor task. We adopted
two well established population-decoding approaches to trans-
form neural activity into estimates of eye position (Bayesian clas-
sification, BC, and maximum-likelihood estimation, MLE).
Importantly, the neural data consisted of short snippets (100 ms)
from individual trials to examine the accuracy and reliability of
EPFs on ecologically relevant timescales. In addition, we mea-
sured a wider range of fixation positions to examine the influence
of nonlinear and non-monotonic aspects of EPFs on the repre-
sentation of eye position. Such effects are common (Andersen
and Mountcastle, 1983; Morris et al., 2012) and as we show here,
can have profound effects on population codes for eye position.

Materials and Methods

The current study consisted of an extended computational analysis of
neural data reported previously (Morris et al., 2012). Accordingly, the
procedures described herein focus on the statistical and analytical treat-
ment of the data and provide only essential details of the behavioral and
electrophysiological procedures. Full details of experimental methods
are provided in our previous reports (Bremmer et al., 2009; Morris et al.,
2012). All procedures were in accordance with published guidelines on
the use of animals in research (European Council Directive 86/609/EEC
and the National Institutes of Health Guide for the Care and use of
Laboratory Animals) and approved by local ethics committees.

Behavioral tasks

Single units were recorded in two male macaque monkeys (M1 and M2)
while they performed an oculomotor task for liquid reward. At the start
of each trial, the animal fixated a small target spot (0.5° diameter, 0.4
cd/cm?) at one of five different positions on a projection screen (Fig. 1).
After a delay (1000 ms), the target stepped either rightward or downward
(step size = 10°) and maintained its new position for a further 1000 ms.
The animal was required to perform a saccade to the new target position
within 500 ms of the target step and hold the new fixation position until
the end of the trial. As shown in Figure 1, the spatial arrangement of
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fixation and target stimuli were such that the eyes were held steady at 13
unique eye positions spanning 30° of oculomotor space in horizontal and
vertical directions. In the current study we analyzed only the data from
these fixation epochs; the saccade epochs will not be considered further
here. Trials were terminated immediately without reward if the animal’s
fixation position deviated from the target by more than one degree at any
time during the fixation intervals. With the exception of the target stim-
uli, the task was performed in almost complete darkness. The animal’s
head was held stationary using a head-post and eye position was moni-
tored throughout the task using implanted scleral search coils.

Electrophysiology

Single-unit recordings were performed in the LIP (N = 75), the VIP (N =
115), the MT, and the MST areas (N = 100 for MT and MST combined).
These cortical regions were located in opposite hemispheres in the two
monkeys (M1 left hemisphere: LIP and VIP; M1 right hemisphere: MT
and MST; M2: opposite configuration). Action potentials were recorded
extracellularly using single tungsten-in-glass microelectrode penetra-
tions through the intact dura and stored for off-line analysis.

Data analysis

Preprocessing. The spike times on each trial were converted to a spike-count
time course by counting the number of spikes within a 100 ms wide window
stepped through the trial in 25 ms time steps. To identify neurons that had
EPFs, the data were aligned to saccade onset and divided into two fixation
intervals (—700 to —300 ms and +300 to +700 ms relative to saccade onset).
Spike counts during each fixation interval were averaged to yield the mean
spike count at each of the 13 unique eye positions spanned by the task (Fig.
2A). Note that two of the fixation positions ([+10,0] and [0,—10]) were
common targets for a pair of rightward and downward saccade conditions;
the paired conditions were averaged.

The presence of an EPF for a given neuron was defined as a statistically
significant modulation of mean spike count across the 13 fixation posi-
tions. This was determined by a 2D regression analysis in which the effect
of eye position (azimuth [X] and elevation [Y]) on mean spike counts, ¢,
was modeled using a second order polynomial of the form:

XY) = a, + a X + aY + a;X* + a,Y? + a; XY

1)

The statistical significance of the overall fit and of the individual coeffi-
cients was determined using stepwise regression and nested F tests. Only
neurons that had significant eye fields were included in the decoding
analyses described below.

Population decoding. The aim of our analysis was to decode the eye
position from the moment-by-moment spiking activity of neurons in
single trials (i.e., with no averaging). This was achieved using two related
population-decoding approaches: BC and MLE. These two approaches
differ in important ways. BC seeks only to make a correct categorical
decision regarding the current eye position (out of the 13 unique fixation
positions in the task) and makes no assumptions about the functional
form of EPFs across oculomotor space. MLE, in contrast, provides metric
estimates of the current eye azimuth and elevation (including interpo-
lated and extrapolated positions) and depends critically on the use of a
parametric description for EPFs (i.e., Eq. 1).

In both cases, the decoder received a vector of spike counts (one for
each neuron) for a given time point and used knowledge of individual
eye-position tuning properties to estimate the associated eye position.
This procedure was repeated for every time point within the fixation
intervals and for every trial. Thus, the analysis generated a distribution of
decoded eye positions for each of the unique fixation positions.

Note that because these neurons were not recorded simultaneously, a
“trial” in this context refers to a synthetic dataset in which a single exper-
imental trial was drawn at random (from the “test set,” see below, Cross-
validation) for each neuron from a common behavioral condition and
collated. This is a common and useful way to simulate population codes
in the brain from single neuron data (Salinas and Abbott, 1994). It should
be noted, however, that this approach ignores potential effects of corre-
lated spike-count variability on the coding of eye position. Correlations
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Figure2. EPFsforthree example neurons.A, The mean spike countis shown foreach of the 13 unique fixation positions shownin Figure 1 (red circles). Spike counts were computed for sequential 100 ms wide
temporal windows during the fixation intervals (i.e., —700 to —300 ms and +300 to +700 ms relative to the onset of the saccade) and averaged. The regression surface (green contours) for each neuron
captures the systematic change in firing rate as a function of fixation position (i.e., the EPF). The axis of maximal modulation (blue line) was characterized by nonlinear and asymmetricinfluences of eye position
onfiring rates. B, Normalized spike-count distributions associated with the EPFs shown in A. The spatial arrangement of the histograms for each neuron corresponds to that of the fixation positions in the task (cf.
Fig. 1). These data show that although the mean spike count was modulated across fixation positions, so too was the associated variability. A Poisson probability model for spike counts provided a good
approximation to the data (green circles), suggesting that EPFs can be more accurately conceptualized as a systematic change in the Poisson A parameter across oculomotor space.
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ric approach, in contrast, uses the observed
Figure3. Decoding eye position from single-unit spike counts. A, The pEPF for the example LIP neuron shown in Figure 2. For  spike-count distributions as an empirical esti-

clarity of presentation, only a one-dimensional cross section is shown (along the axis of maximal modulation of mean firingrate, ~ mate of the underlying probability function
asindicated by the blue line in Fig. 24). The regression surface from Figure 24 (blue line in this figure and right-side ordinate axis)  and thus does not assume any particular prob-
was used as an estimate of how the neuron’s Poisson A parameter varied with eye position. The value of A ata given eye position  ability model.
specifies a conditional probability function over all possible spike counts (left-side ordinate axis and heat map). B, The pEPF was As is often the case for neural data (Tolhurst
converted into a probabilistic look-up table using Bayes’ Rule (see Materials and Methods), in which a given number of observed et al., 1983), the spike-count distributions in
spikes (two, in the example [gray line]) could be translated into a posterior PDF over oculomotor space (i.e., an expressionofthe  our sample were generally consistent with
relative likelihood of all possible eye positions, given the observed neural data; filled area plot). The eye position associated with ~ Poisson-like behavior, as shown for three ex-
the highest posterior probability (MAP) was used as a point estimate for the current eye position (light-bluelineand arrow). (, The  ample neurons in Figure 2B, green circles. A
full, 2D PDF for the two-spike example in B. The blue line shows the axis of maximal modulation, as used for A and B. Poisson assumption was particularly useful for
the current purpose because it allowed the tra-
ditional, regression-based EPF functions (i.e.,
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can enhance, degrade, or have no effect on the information that can be Eq. 1) to be interpreted not only as a descrip-
extracted from a population code (Averbeck et al., 2006). tion of how the mean firing rate varies with eye position, but also the
Probabilistic EPFs. Before decoding can be performed, it is first neces-  associated variance. This is so because for Poisson-distributed random

sary to estimate how spike-count distributions depend on eye position  variables, in which the mean is equal to the variance, the sample mean is
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an unbiased and maximally efficient estimator for both the population
mean and variance (Kass, 2005). Equation 1 therefore captured how the
single Poisson parameter, A, varied as a function of eye position and
expressed a complete account of a neuron’s probabilistic EPF (pEPF).
Specifically, the estimated conditional probability over spike counts (i.e.,
the pEPF) was as follows:

p(C | x,y) = Poisson[A(x, y)] (2)

where

Ax,y) = &x, ) (3)

Figure 3A shows the pEPF for the example LIP neuron from Figure 2. To
prevent single neurons from having an undue influence on the popula-
tion estimate of eye position (see below), values of A that were <0.5 (i.e.,
very low variance) were clamped at 0.5.

Population decoding using pEPFs. pEPFs provide a critical quantitative
link between eye position and the neural response: the probability of a
neural response given an eye position (in statistical terms, a “likelihood
function”); but without additional steps, they do not provide the infor-
mation needed for decoding. Decoding implements the reverse direction
of inference and so requires an estimate of the probability of each eye
position given an observed spike count (i.e. p( X, YIc)). These two types of
conditional probability are related via Bayes’ Rule:

plc| X,Y)p(X,Y)

P(X>Y| C) = p(C)

(3)
where p(X,Y) is the prior probability function over oculomotor space,
and p(c) is the overall (i.e., unconditioned) probability of the observed
spike count. p( X, Ylc) is thus the posterior probability of all possible eye
positions given the neural evidence (i.e., the posterior probability density
function, PDF).

In essence, the decoder constructed for each neuron a probabilistic
look-up table that was used to transform an observed spike count into an
expression of the relative likelihood of all possible eye positions. As is
evident in Figure 3, B and C, single neurons provide only limited infor-
mation about eye position. This uncertainty arises not only from the
stochasticity of neural firing, but also the inherent one-to-many problem
associated with mapping a single spike count onto a 2D eye-position
variable (azimuth and elevation; torsional and binocular aspects of eye
posture are not considered in this paper). This latter problem is illus-
trated in Figure 3C by the curved high-probability region across 2D
oculomotor space.

To resolve this ambiguity, and to minimize the influence of neural
noise, it is presumed that the brain relies on a population code for eye
position (Boussaoud and Bremmer, 1999). Assuming statistical indepen-
dence among N neurons, the optimal way to combine PDFs across the
population is to take their product, which is usually implemented as a
sum of their logarithms:

N
log p(X>Y | Cpnpulalion) = E log P(X)Y| Ci) (4)

i=1

As the final step, the eye position associated with the maximum a posteriori
(MAP) log-likelihood (i.e., the MAP estimate) in log p(X, Y| Coopulation) Was
selected as the point estimate for eye elevation and azimuth. This approach is
shown graphically in Figure 4.

The Bayesian decoding approach has some key features that make it
attractive. First, it naturally weights the estimation procedure in favor of
neurons that provide more reliable information about eye position (Knill
and Pouget, 2004; Ma et al., 2006). This is so because neurons that have
steep EPFs (relative to the associated noise) will generate narrowly
peaked (i.e., low-entropy) PDFs, and in turn, have a stronger influence
on the position of the peak in the population PDF. Conversely, neurons
that have near-flat EPFs will generate broad (i.e., high-entropy) posterior
distributions and have reduced influence on the decoding outcome. Sec-
ond, assuming each neuron provides unbiased and independent infor-
mation about eye position, the population code becomes increasingly
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Figure 4.  Population decoding of eye position. In this hypothetical example, eye position
was estimated from the observed instantaneous spike counts of three neurons (c;, ¢,, and ¢;).
For each neuron, the observed spike count (c;) was transformed into a PDF over oculomotor
space p(X, YIc)) (see Fig. 3). These individual PDFs were then combined (by summing their
logarithms) to yield a population PDF, p(X, Y1¢;,c,,5). Finally, as for the single-unit example
(Fig. 3), a point estimate was taken as the eye position associated with maximum likelihood in
this population posterior probability function (dashed light-blue lines). This form of integration
of information across neurons not only dampens the effects of spiking variability on the estima-
tion of eye position (in a statistically optimal manner), but also resolves the inherent ambiguity
associated with estimating a 2D variable (eye position) from a one-dimensional measurement
(single-unit spike count). Importantly, the precision of this estimation approach typically in-
creases as more neurons are added to the population.
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Figure5.  Sensitivity of single neurons to changes in eye position. Sensitivity was quantified
as the discriminability (d") of the two fixation positions associated with the maximum and
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unequal variance (Macmillan and Creelman, 2005). The histograms show the distribution of "
values across each sample for each cortical area. Sensitivity was not uniform across cortical areas
(ANOVA: 5 176 = 4.32,p = 0.01); rather, LIP neurons had significantly higher sensitivity than
area MT+ (p = 0.007). VIP did not differ significantly from either of the two other areas (both

p>0.09).

minimum mean firing rate for each neuron (ie, d’ = y for

accurate and precise as more neurons are included into the
computations.

BC and MLE. In practice, the decoding approach described above was
performed in two ways. For BC, in which the decoder had to choose only
among the 13 unique fixation positions (as non-metric categories), it was
not necessary to compute the full pEPF for each neuron (i.e., Egs. 1 and
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Figure6.  Performance of a BCalgorithm that estimated eye position from neural population
responses. The classifier used instantaneous spike counts (a single 100 ms sample for each
neuron) from individual trials to predict which of the 13 candidate fixation positions corre-
sponded to the current eye position. 4, Performance when all the recorded neurons were used
for classification, regardless of cortical area (N = 179). The confusion matrix shows the distri-
bution of predicted eye positions for each of the 13 positions. (The ordering of fixation positions
was assigned arbitrarily to the spatial arrangement shown on the right; see also Fig. 1). The
density of predictions along the negative diagonal indicates good overall accuracy for the 13-
alternative task (47.39% correct). B, Mean accuracy across all fixation positions (i.e., mean
percentage along the diagonal of the confusion matrix), plotted separately for classifiers that
estimated on the basis of all neurons in our sample (“ALL") or on each cortical area separately.
The upper plot shows accuracy for the full sample size in each case (N = 60, 69, and 50, and 179
for areas LIP, VIP, MT+, and ALL, respectively). The lower plot shows accuracy for populations
of a fixed size across cortical areas (N = 50; see Results). Error bars indicate 95% confidence
intervals, obtained by repeating the entire analysis on 100 bootstrap samples of neurons from
each area. The horizontal solid and dashed lines in each plot indicate the mean and confidence
intervals for 100 null empirical datasets (each with randomly shuffled eye-position labels).
Accuracy values above or below the dashed lines are therefore significantly different from
chance. €, Confusion matrices for the individual cortical areas (unequal population sizes), plot-
ted in the same format asin A.

2 were not used). Instead, the mean spike count for each of the 13 posi-
tions determined the associated Poisson-likelihood functions (i.e.,
p(CIX,,Y;) where i = 1 to 13). The prior was a vector of values that
expressed the relative frequency of each of the 13 fixation positions
across the entire dataset. The five initial fixation positions occurred
twice as frequently as most target-fixation positions because each was
the starting point for both a rightward and a downward saccade con-
dition. Similarly, two of the target positions were common endpoints
for a pair of rightward and downward saccade conditions (Fig. 1) and
so occurred twice as often as the other target positions. Thus, the prior
odds for the five initial (I) and eight target (T) fixation positions were
202828 20 2L o1 oL o1 o T 2T 2T 2T

For MLE, in which the decoder was free to estimate any position in
oculomotor space (including interpolated and extrapolated positions
that were never adopted during the task), the prior probabilities associ-
ated with the task were ignored and replaced by a uniform probability
density. For pragmatic purposes, MLE was performed over a discrete 2D
oculomotor space spanning 100° of azimuth and elevation (—50° to
+50° along each dimension) with 1° resolution. Although this meant
that the decoder could not estimate an eye position of >50° eccentricity,
in practice almost all estimates were well within this range and we used
robust summary statistics throughout. We confirmed that our choice of
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Figure 7.  The accuracy of eye-position signals in the dorsal visual system, as evaluated
by maximum-likelihood decoding of 179 neurons from areas LIP, VIP, and MT+. 4, Me-
dian decoded eye position (black circles) for each of the initial (top) and target (bottom)
fixation positions (each point is the average median value across cross-validation test sets,
=1 SE [i.e., SD across test sets]; most error bars are smaller than their associated sym-
bols). The true fixation positions are also shown (green circles). The decoded eye positions
closely matched the true eye position in every case, pointing to an accurate representation
of eye position in these visual areas. B, The constant errors from A replotted as a vector
plot to highlight the centripetal pattern of bias across oculomotor space (the data for the
two non-unique fixation positions were averaged). Each arrow points from a true fixation
position to the associated average decoded position. The arrows tend to point toward the
straight-ahead position (0°,0°), consistent with a spatially compressed cortical represen-
tation of eye eccentricity.
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Figure8. Trial-to-trial (and moment-to-moment) dispersion of decoder estimates across all
100 ms samples during fixation. Each plot shows the distribution of decoder estimates associ-
ated with an initial fixation position, arranged spatially to match the task layout. Dispersion was
small for the eccentric fixation positions relative to that of the central fixation position.
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parameter space had no influence on the re-
sults by comparing critical analysis results

Initial positions
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tion decoding reflected reliable characteristics ’ ‘
of the neural code for eye position and not ef- ® o b ° ° . ° ' e o
fects of overfitting. For each cross-validation
set, the mean firing rates at each of the 13 fixa- ® ' ‘
tion positions and the associated regression co-
efficients (for MLE; Eq. 1) were estimated from — VIP
~80% of the available trials for each neuron =
(“training set”). Decoding was then performed o ~ 0-“ ° o _‘_ e O e o o o
on 100 synthetic trials (see above, Population ‘g . “ é
decoding) drawn at random from the remain- q>) e * e o _‘_.
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Unless otherwise stated, the population- [0 “ -‘ .
decoding results presented herein were there- |_|>J" P P P P ‘ .
fore derived from 500 synthetic trials (100 test
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20 T+

Results (o) o_’ ® ow e o o o
Single neurons were recorded in areas *
LIP, VIP, and MT/MST (in separate ses- 0 1 g L4 o o
sions) while the animal Performed a sirp— .¢ .* ® ® ° ~ ® o o
ple oculomotor task (Fig. 1). Each trial
consisted of two fixation epochs separated -20 ° ° ° ° (0) ‘ _..
by either a rightward or downward sacca- 20 0 20
dic eye movement. The arrangement of Eye azimuth (°) © = actual
ﬁxz.mon and. target .stilmuh included .13 ® = decoded
unique fixation positions across a wide
range of oculomotor space (—10°to +20°  Figure9. Theaccuracy of eye-position signals, plotted separately for areas LIP (N = 60), VIP (¥ = 69) and MT+ (N = 50). The

and —20° to +10° along the horizontal
and vertical meridia, respectively). Figure
2A shows an example EPF from each cor-
tical area. The plots show the mean spike count (within 100 ms
temporal windows) as a function of the animal’s fixation position
(azimuth and elevation) in darkness (except for a fixation point).
The LIP neuron, for example, produced more spikes when the
animal fixated right-sided positions than when the animal fixated
left-sided positions, even though the retinal stimulation provided
by the fixation point was equivalent.

These modulations have typically been modeled using simple
regression equations in which the change in the mean firing rate
of a neuron is described by a linear and/or parabolic function of
eye azimuth and elevation (Andersen and Zipser, 1988; Andersen
etal., 1990). The smooth surfaces shown in Figure 2A show these
functions for the example neurons (see Materials and Methods).
As reported previously (Morris et al., 2012) a good proportion of
the neurons recorded in these brain areas showed significant re-
gression surfaces [60/74 (81.0%), 69/114 (60.5%), and 50/95
(52.6%) for areas LIP, VIP, and MT/MST, respectively; note that
MT and MST were pooled for all population analyses and will be
referred to herein as MT+].

Regression equations provide a simple quantitative under-
standing of how such neurons could carry information about eye
position. Like all neurons, however, those with EPFs exhibit sto-
chastic spiking behavior, such that there is considerable variabil-
ity in rates even for constant fixation positions. This is evident in
Figure 2B, which shows the full distribution of spike counts for
each fixation position for each example neuron. The histograms
show that the instantaneous firing rate during fixation (within
100 ms intervals) cannot unambiguously represent the position
of the eyes in the orbit because a given spike count was observed

plots are in the same format as Figure 7A.

across a range of different eye positions. For example, although
for the LIP neuron a spike count of two was more likely to occur
for right-sided fixation positions, the same count was occasion-
ally observed for left-sided positions.

Figure 5 reports a measure of signal-to-noise for single neu-
rons in each cortical area, quantified as the discriminability (d')
of the two eye positions with the highest and lowest mean firing
rate (Macmillan and Creelman, 2005). The histograms show a
range of sensitivities, but in general single neurons provided rel-
atively weak information (d’ ~ 0.75) about eye position.

Bayesian classification

The sensitivity analyses shown in Figure 5 suggest that an unam-
biguous representation of eye position exists only as patterns of
activity across a population of such neurons (i.e., by a population
code), which must be interpreted by downstream structures. A
useful way to probe such representations is to apply decoding
algorithms to recorded neural activity (Salinas and Abbott,
1994); that is, to transform neural activity into point estimates or
categorizations of eye position.

To quantify the signal fidelity of population codes during fix-
ation, we first assessed the ability of a Bayesian classifier to deter-
mine from which behavioral condition (i.e., fixation position) an
instantaneous population response had been drawn. Each popu-
lation response consisted of the number of spikes generated by
each neuron within a 100 ms window during the fixation interval.
For each estimate, the classifier performed a Bayes-optimal infer-
ence in which it took into account not only the likelihood of the
observed response at each of the candidate eye positions (using
knowledge of the observed spike-count distributions at each fix-
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ation position for each neuron), but also the prior probability of
each fixation position. This prior probability function was not
uniform; rather, 7 of the 13 positions were twice as likely as the
remaining positions (Fig. 1; see Materials and Methods). The
classifier used these ingredients (the likelihood function and
the prior) to infer the most likely fixation position given the
neural data (i.e., the eye position associated with the maximum a
posteriori probability). Importantly, this method does not as-
sume any particular functional form for the shape of EPFs across
oculomotor space.

To introduce the approach, and to provide an overview of
signal fidelity, we first report performance when the BC decoder
was applied to all neurons in our sample that had statistically
significant EPFs, regardless of cortical area (179 neurons; Fig.
6A). Classification accuracy is shown in the form of a confusion
matrix, in which the distribution of predicted classes (i.e., eye
positions) is reported for each of the 13 true fixation positions.
Ideally, the predicted class would always match the true eye po-
sition, and thus all observations would fall on the negative diag-
onal of the matrix.

There was indeed a good density of correct predictions, with
an overall accuracy 0f 47.39% (i.e., the average of the percentages
along the diagonal). This level of performance is nearly five times
that expected if one used only the prior probabilities (10%; see
Materials and Methods). The statistical significance of this result
was confirmed by comparing the observed accuracy measure
with those of 100 empirical null datasets (obtained by shuffling
the eye-position labels; Fig. 6B). Importantly, this result cannot
be the result of overfitting because the classifier was trained and
tested on statistically independent trial sets.

Figure 6, B and C, shows the accuracy and confusion matrices
for the separate decoding of LIP, VIP, and MT+ neurons, or-
dered by performance. LIP (N = 60) and VIP (N = 69) provided
reliable information about eye position, with overall accuracies of
34.81 and 30.40%, respectively. MT+ (N = 50) achieved only
18.96% correct, which was significantly better than chance but
poor in absolute terms and relative to LIP and VIP. In making
such a comparison, however, it is important to note that the
number of neurons available to the classifier for area MT+ was
less than those of the other areas. This factor alone is expected to
affect performance, because the more neurons that are available
to a decoder the more it can accumulate signal in the data and
average out the effects of noise. To compare cortical regions on
fair ground, we selected 100 random subsets of 50 neurons from
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The precision of eye-position signals, plotted separately for areas LIP (N = 60), VIP (N = 69), and MT+ (N = 50). The plots are in the same format as Figure 8.
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Figure 11.  Dispersion of maximum-likelihood estimates as a function of population size,
plotted separately for each cortical area in log-log coordinates. The analyses that generated the
results shown in Figure 10 were repeated for each of 100 bootstrapped datasets at each popu-
lation size. Smaller population sizes were simulated by randomly selecting (with replacement)
nout of Nneurons, where n is the population size and N is the total number of neurons available
in our sample for a given area. Each data point is the mean (log) dispersion value (across all
fixation positions) averaged across all 100 resampled datasets, =1 SE (i.e., the SD across the
100 values). Slope values of the least-squares regression lines (dashed) were close to —0.5 for
each area, indicating that the dispersion of decoder estimates decreased approximately in
proportion to the square root of the population size.

each area to compare with the 50 MT+ neurons. This additional
analysis yielded the same pattern of results across areas as that of
the full dataset (Fig. 6B). To assess these differences statistically,
we ran permutation tests (each consisting of 500 resampled, null-
difference datasets) for all three possible comparisons between
areas. These tests confirmed that that for matched population
sizes, LIP and VIP each performed significantly better than area
MT+ (both p < 0.001), while areas LIP and VIP did not differ
significantly from each other (p = 0.348).

Maximum-likelihood estimation

The BC approach provided a useful first insight into the fidelity of
eye-position signals in each of the studied cortical regions. A
more informative approach, however, is to transform neural re-
sponses into explicit, metric estimates of eye azimuth and eleva-
tion. This method has the advantage that it mirrors more closely
the estimation problem faced by the brain during everyday be-
havior, in which the eye can adopt one of an essentially infinite
number of positions over a wide oculomotor range. Moreover, it
yields intuitive measures of both the accuracy (constant error)
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and precision (variable error) of the cor-
tical representation for different regions
of oculomotor space.

The BC method relied on two key in-
gredients for classification: the prior
probability of each of the 13 fixation posi-
tions in the task, and learned knowledge
of the spike-count distributions associ- =
ated with these positions for each neuron.
MLE, in contrast, discards the prior and
extends the spike-count probability model
to a continuous description across a wide
range of oculomotor space (i.e., it incorpo-
rates a parametric description of each neu-
ron’s pEPF). Given a population response,
the ML estimator uses the pEPFs to deter-
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mine which point in oculomotor space is
most likely to be the true current eye
position.

As for the BC method, we introduce
the MLE approach by first examining its
performance when applied to all of the
neurons in our dataset, pooled across cor-
tical areas. Figure 7A shows the median
estimated eye position for each of the ini-
tial and target fixation positions. The de-
coded eye position closely approximated
the true position across all of the fixation
positions, with a mean constant error of
2.71° (SE = 0.25°). A closer look at the
data shows that these small errors were not random in direction,
but rather tended to point toward the primary (i.e., straight
ahead) oculomotor position (Fig. 7B). The gain of the decoded
signals (i.e., decoded eye eccentricity divided by actual eye eccen-
tricity) was 0.87 on average (SE = 0.02) across the 13 fixation
positions. Together, these results point to an accurate, though
slightly compressed, representation of eye position in cortex.

From trial to trial (and time point to time point), however,
there was considerable variability in the individual estimates. Fig-
ure 8 shows the distributions of decoded positions for the five
initial fixation positions. The eccentric fixation positions were
associated with relatively narrow distributions, with an average
dispersion, defined as the median absolute deviation, of 5.58°
(SE = 0.22°). In contrast, the central fixation position was repre-
sented imprecisely, with a dispersion value about 50% higher
than the eccentric positions (8.26°). This result points to an in-
homogeneity in the precision of eye-position signals across ocu-
lomotor space. We will explore this effect further in a later
section.

The same analyses were for performed for the separate decod-
ing of LIP, VIP, and MT+ neurons (Fig. 9). For areas LIP and
VIP, the accuracy of the ML decoder was comparable to that of
the pooled-area dataset reported above (cf. Fig. 7). In contrast,
area MT+ was associated with large, centripetal biases. The more
striking difference between the performance of the individual
areas and the pooled dataset was a large increase in the variability
of individual estimates across samples (Fig. 10). LIP, VIP, and
MT+ were associated with dispersion values of 8.45° (SE =
0.37°),10.07° (SE = 0.54°), and 13.15° (SE = 0.50°), respectively,
on average across the 13 fixation positions. These values are large
enough that one might question the usefulness of such signals for
spatial perception and behavior. Such a perspective, however,
ignores the fact that the precision of a population code depends

Figure 12.
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The representation of eye position is more precise for eccentric fixation positions than for the primary (central)
position. 4, Each heat map shows the pattern of precision (i.e., the inverse of dispersion) across the 13 unique fixation positions
spanned by the animal’s task. The data for each cortical area are normalized relative to the observed precision for the central
fixation position, such thatavalue of 100% indicates a doubling of precision relative to that of the primary oculomotor position. The
data have been interpolated (using natural neighbor interpolation) to highlight the pattern across oculomotor space. B, Mean
non-normalized precision values for each of the 13 fixation positions, plotted as a function of their eccentricity (black circles). Error
bars indicate the SEM (i.e., the SD of precision measures across 100 bootstrap samples; most error bars are smaller than their
associated symbols). Average precision values at each eccentricity are also plotted (magenta circles). Regression analyses con-
firmed a significant quadratic effect of eccentricity on precision for each of the cortical areas (magenta lines; all F > 11.75,

critically on the number of neurons. The sample sizes used here
(N = 50—69) are many orders of magnitude smaller than those
available in these cortical regions in natura.

To examine the effect of population size on precision, we
resampled populations of smaller sizes (with replacement) from
the total sample of neurons in each area and performed MLE on
each bootstrap sample. Figure 11 shows the observed relationship
between the population size and the dispersion of ML estimates
for each cortical area, plotted in log-log coordinates. In each case,
the dispersion decreased approximately linearly with (log) pop-
ulation size, with slope values of —0.52, —0.46, and —0.40 for
areas LIP, VIP, and MT+, respectively. Precision therefore im-
proved approximately in proportion to the square root of the
population size (i.e., a slope of —0.50 in log-log coordinates), as
expected if each neuron acted as an independent estimator of eye
position corrupted by Gaussian noise.

Using the fitted linear relations, we can estimate the number
of neurons that would be required to achieve a criterion level of
precision, assuming statistical independence among neurons.
Adopting a criterion dispersion of 3°, we estimated that ~457,
950, and 2258 neurons would be required in areas LIP, VIP, and
MT+, respectively. Although these projections should be inter-
preted with caution, because they ignore the potential influence
of noise correlations among neurons on population codes, their
modest scale demonstrates that a reliable representation of eye
position is likely to exist in these cortical areas.

MLE: precision depends on eye eccentricity

As noted earlier, the precision of decoding was not uniform
across the 13 fixation positions spanned by the task; rather, ec-
centric fixation positions were associated with higher precision
than the central eye position. This effect was evident in the histo-
grams of decoder estimates for the initial fixation positions (Figs.
8, 10), but is examined directly for all fixation positions and for
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Figure 13.

The dependence of decoder precision on fixation eccentricity reflects the nonlinear aspects of neural EPFs. 4, Two possible explanations for a difference in precision between two

regions of oculomotor space. In these simulated one-dimensional scenarios, a maximum-likelihood decoder was used to estimate eye position from the spike counts of a single neuron at two
different eye positions (x; and x,) using knowledge of its EPF (blue lines). In both scenarios, the decoder generated imprecise estimates for position x, and precise estimates for x,, as indicated by the
wide (black) and narrow (gray) distributions below each plot. In the “Unequal rate variance” scenario, the difference in precision reflects different levels of noise on the firing rates at the two eye
positions, as indicated by the black and gray distributions on the rate (y) axis. In the “Unequal EPF gradient” scenario, the two fixation positions were associated with equal neural noise but had
different local gradients on the EPF due to a quadratic nonlinearity. Nevertheless, the two scenarios generated almost identical decoding outcomes. B, A test of the two possible explanations for the
eccentricity effect on precision. Two quantities were computed for each neuron in our sample at each of the 13 unique fixation positions. The first was the variance of firing rates across trials. The
second was the local gradient of the fitted 2D EPF regression function. The median values of these two measures across neurons are plotted against the corresponding precision measurements for
each fixation position (from Fig. 12B), separately for the pooled-area analysis and each cortical area. Precision correlated strongly with the local EPF gradient and not with rate variance, suggesting
that the eccentricity effect arises from the nonlinear aspects of neural EPFs. *p << 0.05; **p << 0.001.

each cortical area in Figure 12A. The data are plotted as precision
(i.e., the inverse of dispersion) heat maps, and normalized with
respect to the precision of the central fixation position to facilitate
a comparison across areas. In each case, there was a strong and
statistically reliable effect of fixation eccentricity, with an ~50—
100% increase in precision from the central to most peripheral
fixation positions. This effect was well described by a qua-
dratic relation between fixation eccentricity and decoder pre-
cision (Fig. 12B).

To understand the origin of this precision effect, it is necessary
to consider the factors that contribute to variability of ML esti-
mates in this context. Ultimately, of course, the variability reflects
the stochastic fluctuations of neural spiking, and so we might
expect that the inhomogeneous pattern of decoder precision re-
flects a similar anisotropy in the variability of spike rates across
oculomotor space. This simple hypothesis, however, overlooks
the fact that in addition to spike-count variability, the shape of
neural EPFs has direct consequences for the “precision” (techni-
cally, the entropy) of a neuron’s eye-position PDF on a given trial.
All else being equal, regions of oculomotor space in which the
EPF is steep will be encoded with higher precision (Fig. 13A).
These two factors, spike-count variability and the local gradients

of neural EPFs, jointly determine the precision of the decoder.
Therefore, a second hypothesis is that the eccentricity effect arises
from differences in the local gradient of EPFs for central and
peripheral fixation positions, or in other words, from the nonlin-
ear aspects of neural EPFs.

To determine which of these explanations could better ac-
count for the eccentricity effect, we plotted the precision values
for each of the 13 fixation positions against both the associated
median firing rate variance and the median local gradient of the
EPFs across the population (Fig. 13B). The precision measure-
ments correlated poorly and nonsignificantly with spike-rate
variance for the pooled-area analysis, and for areas VIP and
MT+. In contrast, strong and consistent correlations were ob-
served between the precision measurements and the local EPF
gradient in every case, suggesting that this variable provides a
good explanation for the pattern of decoder precision.

Comparison with human behavior

In Figure 7 we observed a compressed neural representation of
eye position in the dorsal visual system, such that the decoded
positions were biased toward the primary oculomotor position. If
cortical EPFs are used to localize visual objects in the environ-
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Figure 14.  The cortical (mis)representation of eye position predicts localization errors that
match human performance. Pointing to a foveated visual target in darkness (with the head
aligned with the body) requires knowledge of the current eye position. Accordingly, the pattern
of constant error observed in Figure 7 predicts that pointing movements to eccentric targets
should be biased toward the straight-ahead position. Behavioral studies of this kind have been
performed in human observers for targets at different positions along the horizontal meridian.
The pointing errors from two such studies (red and green dots) are reproduced in the figure,
plotted as a function of target (eye) eccentricity. Positive and negative values on the ordinate
indicate rightward and leftward mislocalization errors, respectively. The results from both stud-
ies are consistent with a compressed internal representation of eye position in the human
observers. To compare these data with the macaque physiology, we averaged and plotted the
azimuthal error values from Figure 7 at each of the four unique azimuthal eccentricities (black
dots). Error bars indicate =1 SE. A regression line fitted to the neural data (black line) summa-
rized the centripetal biases in the cortical representation of eye position and provided a good
match to the human behavioral data.

ment, as has been suggested (Andersen et al., 1985; Zipser and
Andersen, 1988), then these systematic errors might be observ-
able in human behavior. Such effects could be expected in tasks
that rely on knowledge of eye position, such as pointing toward a
visual target without sensory feedback.

In Figure 14, we compare the localization errors that would be
predicted on the basis of our electrophysiological measurements
with data from two such studies of human performance (Mor-
gan, 1978; Lewald and Ehrenstein, 2000). In both studies, the task
was to point in the direction of a foveated visual target at a range
of different azimuthal eye positions (elevational eye positions and
errors were not examined). Because the experiments were per-
formed in complete darkness, and with the head straight ahead,
accurate localization relied on internal knowledge of eye posi-
tion. The predictions from the neural data (black dots and line)
were generally consistent with the human behavioral data (red
and green dots) and even matched the data of the Lewald and
Ehrenstein study in a quantitative manner (97% performance
variance explained).

Discussion

This study examined eye-position signals in four areas of the
dorsal visual system (LIP, VIP, MT, and MST). We used
population-decoding approaches to take into account not only
changes in the signal carried by neurons (i.e., mean firing rate)
across different eye positions, but also the associated noise (i.e.,
spike-count variability for constant eye positions). The com-
bined influence of these variables determined both the accuracy
(i.e., constant error) and the precision (i.e., variable error) of
population codes for eye position over short timescales. In turn,
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these performance measures allowed an assessment of whether
cortical eye-position signals could be useful for real-time coding
of egocentric spatial positions.

The accuracy of eye-position signals

Taken as a whole, our analysis shows that cortical EPFs provided
a highly accurate representation of eye position during fixation:
constant error of MLEs was within a few degrees of visual angle
across the extent of oculomotor space considered. Ata finer scale,
we found that these errors were not random in direction but
rather were biased toward the primary position. This implies that
cortical eye-position signals underestimate the eccentricity of
gaze.

If the decoded signals were used to localize visual objects,
perceived positions would be compressed toward the head mid-
line (or body midline; Brotchie et al., 1995). Whether such a bias
would be observable in behavior is unclear. In principle, the com-
pression could be annulled during downstream computations,
resulting in unbiased behavior (this is equivalent to adopting a
different decoding rule or different parametric expression for
EPFs than those used here). Even if not corrected, however, the
misrepresentation may be masked during everyday behavior be-
cause of the availability of other spatial cues and strategies (e.g.,
visual guidance). In that case, there would be no error signal to
drive calibratory processes (Redding and Wallace, 1996) and the
misrepresentations might be detectable in the laboratory.

Investigators have probed eye-position signals using a variety
of behavioral tasks. For example, Lewald and Ehrenstein (2000)
had human observers localize visual targets at a range of azi-
muthal positions using a hand-held pointer. Importantly, the
targets were foveated in darkness and with the head directed
straight ahead, such that accurate localization relied on knowl-
edge of eye position. These authors observed a centripetal bias in
performance that was proportional to eye eccentricity, suggesting
that subjects used a compressed representation of eye position. As
shown here, this misrepresentation was consistent with that of
cortical EPFs (Fig. 14). Similar compression effects have been
observed across a number of behavioral studies (Hill, 1972; Mor-
gan, 1978; Enright, 1995), though with different magnitudes and
in some instances, no compression at all (Bock, 1986; Rossetti et
al., 1994).

In a different kind of study, James et al. (2001) had observers
judge the slant of a cube face seen at different azimuthal posi-
tions—a task that relies on knowledge of eye position but does not
require a spatially directed response (thus minimizing motor-
related biases). Consistent with the localization studies, they
found that subjects undercompensated for the change in eye po-
sition, as if the brain used a compressed representation of eye
position for the perception of object slant (Ebenholtz and Paap,
1973).

This consistency across studies, and their qualitative match
with the macaque physiology reported here, supports the notion
that EPFs play a direct role in the spatial computations for action
planning and perception (Zipser and Andersen, 1988; Pouget and
Sejnowski, 1997; Salinas and Sejnowski, 2001). This is contrary to
the view that they serve only a slow, calibratory purpose (Wang et
al., 2007; Xu etal., 2012). In addition, we recently showed that the
dynamics of EPFs provide a good account of well known local-
ization errors that occur for briefly flashed targets around the
time of saccades (Morris et al., 2012). In that study, we showed
that the cortical representation of eye position is updated predic-
tively but with slow dynamics, such that it represents a temporally
smoothed version of the eye movement. This damped represen-
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tation matched a long-standing hypothetical eye-position signal
that had been estimated from psychophysical measurements
(Honda, 1990, 1991; Dassonville et al., 1992).

Finally, in anticipation of potential confusion, we note that
the compression effect reported here is distinct from the psycho-
physical “compression of visual space” that is found around the
time of saccades (Ross et al., 2001). The latter phenomenon is
characterized by a transient mislocalization of visual probes to-
ward the location of a saccade target in eye-centered coordinates,
not toward the head midline or body midline as would be pre-
dicted on the basis of the current findings. This study therefore
does not directly bear on the issue of perisaccadic perceptual
compression. Previously, however, we showed that the represen-
tation of a target’s position on the retina is distorted at the time of
saccades in a manner that could account for the compression of
visual space (Krekelberg et al., 2003).

The precision of cortical eye-position signals

Precision, in this context, refers to variability of population codes
for eye position from one moment to the next, and thus is a key
determinant of the usefulness of such signals for real-time spatial
computations. We quantified precision as the dispersion of
population estimates for constant eye positions, regardless of
the associated accuracy. Dispersion values were generally large,
around 5° on average for the decoding of eye position from our
total sample, and higher still for the separate decoding of neurons
in LIP, VIP, and MT+. Superficially, these values would imply
that cortical eye-position signals would be too unreliable for spa-
tial coding on behaviorally relevant timescales. Population codes,
however, typically become more reliable as the number of neu-
rons increases, and the brain no doubt calls on much larger pools
of neurons in natura than those sampled here (Boussaoud and
Bremmer, 1999; Averbeck et al., 2006). Indeed, population-size
analyses suggested that a highly precise representation of eye po-
sition should be available in these dorsal visual areas. Without
knowledge of the correlational structure of the spike-count vari-
ability, however, it is not possible to form a definitive conclusion
in this regard (Averbeck et al., 2006). Future experiments that
record from multiple neurons simultaneously could address this
issue.

Another key finding was that precision depended strongly on
the eccentricity of fixation. The outermost fixation positions (ec-
centricity = 22.5°) were decoded with approximately twice the
precision of the central position. This inhomogeneity was evident
in each of the cortical areas we examined and was attributable to
the nonlinear (i.e., quadratic) aspects of EPFs. Specifically, cor-
relation analysis suggested that the increase in precision for pe-
ripheral positions reflected a tendency toward steeper local EPF
gradients (and hence, enhanced discriminability of eye posi-
tions), and not decreased variability of neuronal spiking. This
implies that nonlinearities in cortical EPFs have important con-
sequences for the representation of eye position.

The effects of eccentricity on precision predict a specific pat-
tern of performance on tasks that rely on eye-position signals.
Few studies have attempted to isolate the eye-position contribu-
tion to variability in behavioral responses, and the results are
inconsistent. For example, Enright (1995) observed an increase in
the precision of pointing movements during eccentric fixation
(approximately 25%, calculated from Enright, 1995, his Table 1),
consistent with the results of the current study. Rossetti et al.
(1994) and Blohm and Crawford (2007), in contrast, found a
decrease in pointing precision with increasing eccentricity of eye
position. These discrepancies across studies suggest that it may be
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difficult to isolate the contribution of noisy eye-position repre-
sentations to behavioral measures. This is perhaps not surprising
given that variable error in such measurements reflects the cumu-
lative noise across all stages of the sensorimotor pathway, of
which eye-position signals make up only a fraction. Moreover, in
such studies, it is impossible to vary eye position independently of
other noise-producing spatial variables (e.g., position of the tar-
get on the retina, or, position of the target relative to the body).
Nevertheless, by modeling the full sensorimotor transformation
from eye to hand, Blohm and Crawford (2007) showed that the
behavioral variability in their study was best explained by in-
creased noise in eye-position signals during eccentric fixation.
This pattern is opposite to that of the current study. Thus, the link
between our physiological findings and measurements of behav-
ioral variability requires further investigation.

Signal fidelity across cortical areas

LIP and VIP population codes carried more accurate and precise
representations of eye position relative to those in MT+ (MT and
MST combined), even when matched for sample size. The cause
of these area differences is unknown. One possibility is that they
reflect the different functional roles attributed to these areas: LIP
and VIP are more directly implicated in movement planning
and/or multisensory integration (Colby and Goldberg, 1999; An-
dersen and Buneo, 2002; Bremmer, 2005) than are areas MT and
(to a lesser extent) MST-roles for which eye-position informa-
tion is crucial. Alternatively, eye-position signals in area MT +
might depend more strongly on the presence of visual stimula-
tion (and the associated increase in firing rates).

Conclusion

Cortical EPFs provide a representation of eye position that is
sufficiently accurate and precise on short timescales to support
their purported role in on-line spatial computation. The small
mismatch between the actual eye position and that represented in
the dorsal-visual system can account for known spatial biases in
human perception and action.
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