Difference between revisions of "CoSMo 2016"

(Computational Neuroimaging)
(Motor control & learning)
Line 136: Line 136:
 
''Aug 10 & 11'' <br>
 
''Aug 10 & 11'' <br>
 
Lecturers: Reza Shadmehr, John Krakauer, & Alaa Ahmed
 
Lecturers: Reza Shadmehr, John Krakauer, & Alaa Ahmed
 +
 +
[https://umn.webex.com/umn/lsr.php?RCID=736b51abdbf44ed5a04b7819d9d5ae0e Link] to Wed lecture video.
  
 
Individual Meeting Sign-up Sheets:
 
Individual Meeting Sign-up Sheets:
Line 146: Line 148:
 
[[Media:Assignment_Alaa_CoSMo2016.pdf | Assignment instructions]] <br>
 
[[Media:Assignment_Alaa_CoSMo2016.pdf | Assignment instructions]] <br>
 
[[Media:EffMassDounskaia_2016.mat | Data]] and [[Media:Minjerk.m | associated Matlab file]]
 
[[Media:EffMassDounskaia_2016.mat | Data]] and [[Media:Minjerk.m | associated Matlab file]]
 
  
 
== DREAM database - Shared data and models for CoSMo projects ==
 
== DREAM database - Shared data and models for CoSMo projects ==

Revision as of 20:40, 11 August 2016

This page contains course materials for the CoSMo 2016 summer school.

CoSMo logo


Introduction

Aug 1-4
Lecturers: Gunnar Blohm, Paul Schrater, Konrad Kording

Individual Meeting Sign-up Sheets: Gunnar Paul Konrad

Day 1 - Overview of sensory-motor computations

Organization slides
Philosophy of modelling slides
Sensorimotor overview slides


Afternoon tutorial 1 - plotting neural data

Here is the file [Stevenson Data Set] As part of the tuning curve exercise we will understand it.


Afternoon tutorial 2: gain modulation for reference frame transformations

The goal of this tutorial is to understand how gain modulation can be used for reference frame transformations and how gain modulation can emerge from training a simple artificial neural network carrying out reference frame transformations.
There are 2 different approaches to solving this:

  • exact determination of read-out weights from eye-position gain-modulated neurons as in this seminal paper. Here the solution can be found by computing the least-square optimal set of weights mapping the gain-modulated neurons (population code) to head-centered output neuron(s). For this to work, population code neurons need to be of the exponential function family.
  • training a neural network to perform reference frame transformations using this code. For this you can plot each individual neuron's receptive field for different eye positions and analyze how the receptive field changes with eye position in each network layer.


Day 2 - Bayesian approaches

Bayesian perception - an introduction: a tremendous book written by Wei Ji Ma, Konrad Kording, Daniel Goldreich


Morning lectures and tutorial (Konrad)

Conditional Probabilities slides

Bayesian models slides

Cuecumber nation slides

Tutorial and additional steps for extra points


Afternoon lectures and tutorial (Paul)

Face attractiveness and decision tutorials, and lecture slides

Here are modeling tutorial instructions. Please also read the papers by Lappe and Seno.


Day 3 - Linear systems

Morning lectures and tutorials (Theory and saccades)
Linear systems theory slides
Modelling saccades slides
This Matlab file contains both the time representation and frequency representation (using the control systems toolbox) solutions for modelling saccades. Here is yet another way to approach the solution through explicit convolution (this is not preferred but possible ;-) ).

van Opstal syllabus - linear systems theory: a great syllabus developed by John van Opstal for CoSMo on using linear systems to model gaze control with theory, exercises and answers to exercises


Afternoon lectures and tutorials (Kalman filter)
Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation
Kalman Filter tutorials and slides


Day 4 - Optimality and data analyses

Konrad talked about model fitting...
Paul talked about Model Complexity and it's consequences. Link here
Model evaluation slides


Modeling movement and disorders

Aug 5-6
Lecturers: Dagmar Sternad & Francisco Valero-Cuevas

Individual Meeting Sign-up Sheets: Dagmar Francisco


Day 5 (Francisco)

Book website for Fundamentals of Neuromechanics

Link to tutorial code from chapter 9.


Day 6 (Dagmar)

Link to dropbox with tutorial code.
Dagmar's slides


The Bayesian Brain

Aug 8
Lecturer: Adam Johnson

Link to lecture video (requires installing webex plugin).

Individual Meeting Sign-up Sheet: Adam Johnson


Tutorials link

Link to drive with talk slides and videos

Computational Neuroimaging

Aug 9
Lecturer: Jörn Diedrichsen

Link to lecture video.

Individual Meeting Sign-up Sheet: Jörn Diedrichsen


Joern's lecture slides

Representational models paper by Joern and Niko (in preparation)

Tutorial instructions and dataset

RSA tooblox on Github

Motor control & learning

Aug 10 & 11
Lecturers: Reza Shadmehr, John Krakauer, & Alaa Ahmed

Link to Wed lecture video.

Individual Meeting Sign-up Sheets: Reza Shadmehr John Krakauer Alaa Ahmed


Afternoon tutorials - Aug 10
Assignment instructions
Data and associated Matlab file

DREAM database - Shared data and models for CoSMo projects

Jul 31 - Aug 14
Curtesy: Konrad Kording

You can get the DREAM project from Gunnar on a USB drive. DREAM can also be downloaded piece-wise (data sets, models, tools, and documentation) from CRCNS: http://crcns.org/data-sets/movements/dream/downloading-dream. You will need to create an account on CRCNS to be able to download the project files. If you want "all" of DREAM (models, tools, and documentation), click here: AllDream.zip

If you're familiar with svn and would like info/credentials for code in the repository, contact Ben Walker


Here's the latest version of LoadDreamPaths.m. (This script should work for all OSes.)


Here is a description of data sets currently in Dream. Dream is growing, but this list is accurate as of the time of the summer school (click on the link to access the related publication).

  • Burns -- reaching with head tilt and left/right visual perturbations
  • Corbett -- reach trajectory predictions based on EMG and gaze movements
  • Fernandes -- reaching with uncertain and rotated midpoint feedback
  • Flint -- decoding of reaching movements from local field potentials
  • Kording -- reaching with uncertain midpoint feedback
  • Mattar 07 -- generalizing from one, two or multi targets to another direction
  • Mattar 10 -- reaching to a distance (short/long), generalizing to the other one (long/short)
  • Ostry -- move in force field, get an estimation of where the hand is
  • Scott -- monkey (no spike), center out: even and not evenly distributed targets, also a forward/back
  • Stevenson -- center out, monkey with neural time stamps
  • Thoroughman -- reach adaptation to perturbations with different complexity
  • Vahdat -- movement in force field with FMRI scans pre/post learning
  • Wei 08 -- visual perturbations, cursor shown only at target
  • Wei 10 -- movement in differing force fields
  • Young -- movement time stayed the same, but distance changed; fast, medium, slow reaches.


Group projects

Jul 31 - Aug 14

Here are some ideas for 2-week project topics.

How-to-model tutorial (Aug 2, evening)

Template for final project presentations