Difference between revisions of "CoSMo 2018"
(→Introduction) |
(→Day 2 - Bayesian approaches) |
||
Line 38: | Line 38: | ||
=== Day 2 - Bayesian approaches === | === Day 2 - Bayesian approaches === | ||
+ | '''MORNING LECTURE TUTORIAL''' | ||
[https://drive.google.com/file/d/0B7BtxrHIZHgpUmUxXzl2WHVsUEk/view Bayesian perception - an introduction]: a tremendous book written by Wei Ji Ma, Konrad Kording, Daniel Goldreich <br> | [https://drive.google.com/file/d/0B7BtxrHIZHgpUmUxXzl2WHVsUEk/view Bayesian perception - an introduction]: a tremendous book written by Wei Ji Ma, Konrad Kording, Daniel Goldreich <br> | ||
− | + | Konrad's tutorial is available | |
[https://www.dropbox.com/sh/mqr7x1q8rk9129h/AAChwxoOwvQ3Y6U47cO8HRkVa?dl=0 here] <br> | [https://www.dropbox.com/sh/mqr7x1q8rk9129h/AAChwxoOwvQ3Y6U47cO8HRkVa?dl=0 here] <br> | ||
'''AFTERNOON LECTURE TUTORIAL''' | '''AFTERNOON LECTURE TUTORIAL''' | ||
− | [https://www.dropbox.com/sh/w1ajv6b1s1gc45u/AAAMIZR5FZUqNJn_8-yOgQ5ma?dl=0 Dropbox link to slides and tutorial]: Material for decision making lecture and tutorial <br> | + | [https://www.dropbox.com/sh/w1ajv6b1s1gc45u/AAAMIZR5FZUqNJn_8-yOgQ5ma?dl=0 Dropbox link to Paul's slides and tutorial]: Material for decision making lecture and tutorial <br> |
Revision as of 14:11, 31 July 2018
This page contains course materials for the CoSMo 2018 summer school.
Introduction
Jul 30 - Aug 4
Lecturers: Gunnar Blohm, Paul Schrater, Konrad Kording
Day 1 - Overview of modeling in neuroscience
CoSMo 2018 organizational slides
Konrad's and Gunnar's model pitches
Paul's multiple learning pitch
Paul's optimal forgetting pitch
Paul's deep learning bottleneck pitch
Paul's minimum intervention principle pitch
Afternoon tutorial 1 - plotting neural data
Here is the file [Stevenson Data Set]
As part of the tuning curve exercise we will understand it.
Tutorial is available here
Afternoon tutorial 2: gain modulation for reference frame transformations
The goal of this tutorial is to understand how gain modulation can be used for reference frame transformations and how gain modulation can emerge from training a simple artificial neural network carrying out reference frame transformations.
There are 2 different approaches to solving this:
- exact determination of read-out weights from eye-position gain-modulated neurons as in this seminal paper. Here the solution can be found by computing the least-square optimal set of weights mapping the gain-modulated neurons (population code) to head-centered output neuron(s). For this to work, population code neurons need to be of the exponential function family.
- training a neural network to perform reference frame transformations using this code. For this you can plot each individual neuron's receptive field for different eye positions and analyze how the receptive field changes with eye position in each network layer.
Day 2 - Bayesian approaches
MORNING LECTURE TUTORIAL
Bayesian perception - an introduction: a tremendous book written by Wei Ji Ma, Konrad Kording, Daniel Goldreich
Konrad's tutorial is available
here
AFTERNOON LECTURE TUTORIAL
Dropbox link to Paul's slides and tutorial: Material for decision making lecture and tutorial